

1

11

Chapter 1 Resources
Perhaps the most familiar part of the web is the HTTP address. When I want to find a recipe for
a dish featuring broccoli, which is almost never, then I might open my web browser and enter
http://food.com in the address bar to go to the food.com website and search for recipes. My
web browser understands this syntax and knows it needs to make an HTTP request to a server
named food.com. We'll talk later about what it means to "make an HTTP request" and all the
networking details involved. For now, we just want to focus on the address: http://food.com.

Resource Locators

The address http://food.com is what we call a URL—a uniform resource locator. It
represents a specific resource on the web. In this case, the resource is the home page of the
food.com website. Resources are things I want to interact with on the web. Images, pages, files,
and videos are all resources.

There are billions, if not trillions, of places to go on the Internet—in other words, there are
trillions of resources. Each resource will have a URL I can use to find it.
http://news.google.com is a different place than http://news.yahoo.com. These are two
different names, two different companies, two different websites, and therefore two different
URLs. Of course, there will also be different URLs inside the same website.
http://food.com/recipe/broccoli-salad-10733/ is the URL for a page with a broccoli
salad recipe, while http://food.com/recipe/grilled-cauliflower-19710/ is still at
food.com, but is a different resource describing a cauliflower recipe.

We can break the last URL into three parts:

1. http, the part before the ://, is what we call the URL scheme. The scheme describes
how to access a particular resource, and in this case it tells the browser to use the
hypertext transfer protocol. Later we'll also look at a different scheme, HTTPS, which is
the secure HTTP protocol. You might run into other schemes too, like FTP for the file
transfer protocol, and mailto for email addresses.

Everything after the :// will be specific to a particular scheme. So, a legal HTTP URL
may not be a legal mailto URL—those two aren't really interchangeable (which makes
sense because they describe different types of resources).

2. food.com is the host. This host name tells the browser the name of the computer
hosting the resource. The computer will use the Domain Name System (DNS) to
translate food.com into a network address, and then it will know exactly where to send
the request for the resource. You can also specify the host portion of a URL using an IP
address.

3. /recipe/grilled-cauliflower-19710/ is the URL path. The food.com host should
recognize the specific resource being requested by this path and respond appropriately.

Sometimes a URL will point to a file on the host's file system or hard drive. For example, the
URL http://food.com/logo.jpg might point to a picture that really does exist on the

12

food.com server. However, resources can also be dynamic. The URL
http://food.com/recipes/brocolli probably does not refer to a real file on the food.com
server. Instead, some sort of application is running on the food.com host that will take that
request and build a resource using content from a database. The application might be built
using ASP.NET, PHP, Perl, Ruby on Rails, or some other web technology that knows how to
respond to incoming requests by creating HTML for a browser to display.

In fact, these days many websites try to avoid having any sort of real file name in their URL. For
starters, file names are usually associated with a specific technology, like .aspx for Microsoft's
ASP.NET technology. Many URLs will outlive the technology used to host and serve them.
Secondly, many sites want to place keywords into a URL (like having /recipe/broccoli/ in
the URL for a broccoli recipe). Having these keywords in the URL is a form of search engine
optimization (SEO) that will rank the resource higher in search engine results. Descriptive
keywords, not file names, are important for URLs these days.

Some resources will also lead the browser to download additional resources. The food.com
home page will include images, JavaScript files, CSS, and other resources that will all combine
to present the "home page" of food.com.

Figure 1: food.com home page

Ports, Query Strings, and Fragments

Now that we know about URL schemes, hosts, and paths, let's also look at a URL with a port
number:

http://food.com:80/recipes/broccoli/

13

The number 80 represents the port number the host is using to listen for HTTP requests. The
default port number for HTTP is port 80, so you generally see this port number omitted from a
URL. You only need to specify a port number if the server is listening on a port other than port
80, which usually only happens in testing, debugging, or development environments. Let's look
at another URL.

http://www.bing.com/search?q=broccoli

Everything after ? (the question mark) is known as the query. The query, also called the query
string, contains information for the destination website to use or interpret. There is no formal
standard for how the query string should look as it is technically up to the application to interpret
the values it finds, but you'll see the majority of query strings used to pass name–value pairs in
the form name1=value1&name2=value2.

For example:

http://foo.com?first=Scott&last=Allen

There are two name–value pairs in this example. The first pair has the name "first" and the
value "Scott". The second pair has the name "last" with the value "Allen". In our earlier URL
(http://www.bing.com/search?q=broccoli), the Bing search engine will see the name "q"
associated with the value "broccoli". It turns out the Bing engine looks for a “q” value to use as
the search term. We can think of the URL as the URL for the resource that represents the Bing
search results for broccoli.

Finally, one more URL:

http://server.com?recipe=broccoli#ingredients

The part after the # sign is known as the fragment. The fragment is different than the other
pieces we've looked at so far, because unlike the URL path and query string, the fragment is not
processed by the server. The fragment is only used on the client and it identifies a particular
section of a resource. Specifically, the fragment is typically used to identify a specific HTML
element in a page by the element's ID.

Web browsers will typically align the initial display of a webpage such that the top of the element
identified by the fragment is at the top of the screen. As an example, the URL
http://odetocode.com/Blogs/scott/archive/2011/11/29/programming-windows-8-
the-sublime-to-the-strange.aspx#feedback has the fragment value "feedback". If you
follow the URL, your web browser should scroll down the page to show the feedback section of
a particular blog post on my blog. Your browser retrieved the entire resource (the blog post), but
focused your attention to a specific area—the feedback section. You can imagine the HTML for
the blog post looking like the following (with all the text content omitted):

<div id="post">
 ...
</div>
<div id="feedback">
 ...
</div>

14

The client makes sure the element with the “feedback” ID is at the top.

If we put together everything we've learned so far, we know a URL is broken into the following
pieces:

<scheme>://<host>:<port>/<path>?<query>#<fragment>

URL Encoding

All software developers who work with the web should be aware of character encoding issues
with URLs. The official documents describing URLs go to great lengths to make URLs as usable
and interoperable as possible. A URL should be as easy to communicate through email as it is
to print on a bumper sticker and affix to a 2001 Ford Windstar. For this reason, the Internet
standards define unsafe characters for URLs. For example, the space character is considered
unsafe because space characters can mistakenly appear or disappear when a URL is in printed
form (is that one space or two spaces on your business card?).

Other unsafe characters include the number sign (#) because it is used to delimit a fragment,
and the caret (^) because it isn't always transmitted correctly through all network devices. In
fact, RFC 3986 (the "law" for URLs), defines the safe characters for URLs to be the
alphanumeric characters in US-ASCII, plus a few special characters like the colon (:) and the
slash mark (/).

Fortunately, you can still transmit unsafe characters in a URL, but all unsafe characters must be
percent-encoded (aka URL encoded). %20 is the encoding for a space character (where 20 is
the hexadecimal value for the US-ASCII space character).

As an example, let's say you wanted to create the URL for a file named "^my resume.txt" on
someserver.com. The legal, encoded URL would look like:

http://someserver.com/%5Emy%20resume.txt

Both the ^ and space characters have been percent-encoded. Most web application frameworks
will provide an API for easy URL encoding. On the server side, you should run your dynamically
created URLs through an encoding API just in case one of the unsafe characters appears in the
URL.

Resources and Media Types

So far we've focused on URLs and simplified everything else. But, what does it mean when we
enter a URL into the browser? Typically it means we want to retrieve or view some resource.
There is a tremendous amount of material to view on the web, and later we'll also see how
HTTP also enables us to create, delete, and update resources. For now, we'll stay focused on
retrieval.

We haven't been very specific about the types of resources we want to retrieve. There are
thousands of different resource types on the web—images, hypertext documents, XML
documents, video, audio, executable applications, Microsoft Word documents, and countless
more.

15

In order for a host to properly serve a resource, and in order for a client to properly display a
resource, the parties involved have to be specific and precise about the type of the resource. Is
the resource an image? Is the resource a movie? We wouldn't want our web browsers to try
rendering a PNG image as text, and we wouldn't want them to try interpreting hypertext as an
image.

When a host responds to an HTTP request, it returns a resource and also specifies the content
type (also known as the media type) of the resource. We'll see the details of how the content
type appears in an HTTP message in the next chapter.

To specify content types, HTTP relies on the Multipurpose Internet Mail Extensions (MIME)
standards. Although MIME was originally designed for email communications, HTTP uses MIME
standards for the same purpose, which is to label the content in such a way that the client will
know what the content contains.

For example, when a client requests an HTML webpage, the host can respond to the HTTP
request with some HTML that it labels as "text/html". The "text" part is the primary media
type, and the "html" is the media subtype. When responding to the request for an image, the
host will label the resource with a content type of "image/jpeg" for JPG files, "image/gif" for
GIF files, or "image/png" for PNG files. Those content types are standard MIME types and are
literally what will appear in the HTTP response.

A Quick Note on File Extensions

You might think that a browser would rely on the file extension to determine the content type of
an incoming resource. For example, if my browser requests "frog.jpg" it should treat the
resource as a JPG file, but treat "frog.gif" as a GIF file. However, for most browsers, the file
extension is the last place it will go to determine the actual content type.

File extensions can be misleading, and just because we requested a JPG file doesn't mean the
server has to respond with data encoded in JPG format. Microsoft documents Internet Explorer
(IE) as first looking at the content type tag specified by the host. If the host doesn't provide a
content type, IE will then scan the first 200 bytes of the response trying to guess the content
type. Finally, if IE doesn't find a content type and can't guess the content type, it will fall back on
the file extension used in the request for the resource. This is one reason why the content type
label is important, but it is far from the only reason.

Content Type Negotiation

Although we tend to think of HTTP as something used to serve webpages, it turns out the HTTP
specification describes a flexible, generic protocol for moving high-fidelity information. Part of
the job of moving information around is making sure all the parties involved know how to
interpret the information, and this is why the media type settings are important.

However, media types aren't just for hosts. Clients can play a role in what media type a host
returns by taking part in a content type negotiation.

16

A resource identified by a single URL can have multiple representations. Take, for example,
the broccoli recipe we mentioned earlier. The single recipe might have representations in
different languages (English, French, and German). The recipe could even have representations
in different formats (HTML, PDF, and plain text). It's all the same resource and the same recipe,
but different representations.

The obvious question is: Which representation should the server select? The answer is in the
content negotiation mechanism described by the HTTP specification. When a client makes an
HTTP request to a URL, the client can specify the media types it will accept. The media types
are not only for the host to tag outgoing resources, but also for clients to specify the media type
they want to consume.

The client specifies what it will accept in the outgoing request message. Again, we'll see details
of this message in Chapter 2, but imagine a request to http://food.com/ saying it will accept
a representation in the German language. It's up to the server to try fulfilling the request. The
host might send a textual resource that is still in English, which will probably disappoint a
German-speaking user, but this is why we call it content negotiation and not content ultimatum.

Web browsers are sophisticated pieces of software that can deal with many different types of
resource representations. Content negotiation is something a user would probably never care
about, but for software developers (especially web service developers) content negotiation is
part of what makes HTTP great. A piece of code written in JavaScript can make a request to the
server and ask for a JSON representation. A piece of code written in C++ can make a request to
the server and ask for an XML representation. In both cases, if the host can satisfy the request,
the information will arrive at the client in an ideal format for parsing and consumption.

Where Are We?

At this point we've gotten about as far as we can go without getting into the nitty-gritty details of
what an HTTP message looks like. We've learned about URLs, URL encoding, and content
types. It's time to see what these content type specifications look like as they travel across the
wire.

1

11

Chapter 1 Resources
Perhaps the most familiar part of the web is the HTTP address. When I want to find a recipe for
a dish featuring broccoli, which is almost never, then I might open my web browser and enter
http://food.com in the address bar to go to the food.com website and search for recipes. My
web browser understands this syntax and knows it needs to make an HTTP request to a server
named food.com. We'll talk later about what it means to "make an HTTP request" and all the
networking details involved. For now, we just want to focus on the address: http://food.com.

Resource Locators

The address http://food.com is what we call a URL—a uniform resource locator. It
represents a specific resource on the web. In this case, the resource is the home page of the
food.com website. Resources are things I want to interact with on the web. Images, pages, files,
and videos are all resources.

There are billions, if not trillions, of places to go on the Internet—in other words, there are
trillions of resources. Each resource will have a URL I can use to find it.
http://news.google.com is a different place than http://news.yahoo.com. These are two
different names, two different companies, two different websites, and therefore two different
URLs. Of course, there will also be different URLs inside the same website.
http://food.com/recipe/broccoli-salad-10733/ is the URL for a page with a broccoli
salad recipe, while http://food.com/recipe/grilled-cauliflower-19710/ is still at
food.com, but is a different resource describing a cauliflower recipe.

We can break the last URL into three parts:

1. http, the part before the ://, is what we call the URL scheme. The scheme describes
how to access a particular resource, and in this case it tells the browser to use the
hypertext transfer protocol. Later we'll also look at a different scheme, HTTPS, which is
the secure HTTP protocol. You might run into other schemes too, like FTP for the file
transfer protocol, and mailto for email addresses.

Everything after the :// will be specific to a particular scheme. So, a legal HTTP URL
may not be a legal mailto URL—those two aren't really interchangeable (which makes
sense because they describe different types of resources).

2. food.com is the host. This host name tells the browser the name of the computer
hosting the resource. The computer will use the Domain Name System (DNS) to
translate food.com into a network address, and then it will know exactly where to send
the request for the resource. You can also specify the host portion of a URL using an IP
address.

3. /recipe/grilled-cauliflower-19710/ is the URL path. The food.com host should
recognize the specific resource being requested by this path and respond appropriately.

Sometimes a URL will point to a file on the host's file system or hard drive. For example, the
URL http://food.com/logo.jpg might point to a picture that really does exist on the

12

food.com server. However, resources can also be dynamic. The URL
http://food.com/recipes/brocolli probably does not refer to a real file on the food.com
server. Instead, some sort of application is running on the food.com host that will take that
request and build a resource using content from a database. The application might be built
using ASP.NET, PHP, Perl, Ruby on Rails, or some other web technology that knows how to
respond to incoming requests by creating HTML for a browser to display.

In fact, these days many websites try to avoid having any sort of real file name in their URL. For
starters, file names are usually associated with a specific technology, like .aspx for Microsoft's
ASP.NET technology. Many URLs will outlive the technology used to host and serve them.
Secondly, many sites want to place keywords into a URL (like having /recipe/broccoli/ in
the URL for a broccoli recipe). Having these keywords in the URL is a form of search engine
optimization (SEO) that will rank the resource higher in search engine results. Descriptive
keywords, not file names, are important for URLs these days.

Some resources will also lead the browser to download additional resources. The food.com
home page will include images, JavaScript files, CSS, and other resources that will all combine
to present the "home page" of food.com.

Figure 1: food.com home page

Ports, Query Strings, and Fragments

Now that we know about URL schemes, hosts, and paths, let's also look at a URL with a port
number:

http://food.com:80/recipes/broccoli/

13

The number 80 represents the port number the host is using to listen for HTTP requests. The
default port number for HTTP is port 80, so you generally see this port number omitted from a
URL. You only need to specify a port number if the server is listening on a port other than port
80, which usually only happens in testing, debugging, or development environments. Let's look
at another URL.

http://www.bing.com/search?q=broccoli

Everything after ? (the question mark) is known as the query. The query, also called the query
string, contains information for the destination website to use or interpret. There is no formal
standard for how the query string should look as it is technically up to the application to interpret
the values it finds, but you'll see the majority of query strings used to pass name–value pairs in
the form name1=value1&name2=value2.

For example:

http://foo.com?first=Scott&last=Allen

There are two name–value pairs in this example. The first pair has the name "first" and the
value "Scott". The second pair has the name "last" with the value "Allen". In our earlier URL
(http://www.bing.com/search?q=broccoli), the Bing search engine will see the name "q"
associated with the value "broccoli". It turns out the Bing engine looks for a “q” value to use as
the search term. We can think of the URL as the URL for the resource that represents the Bing
search results for broccoli.

Finally, one more URL:

http://server.com?recipe=broccoli#ingredients

The part after the # sign is known as the fragment. The fragment is different than the other
pieces we've looked at so far, because unlike the URL path and query string, the fragment is not
processed by the server. The fragment is only used on the client and it identifies a particular
section of a resource. Specifically, the fragment is typically used to identify a specific HTML
element in a page by the element's ID.

Web browsers will typically align the initial display of a webpage such that the top of the element
identified by the fragment is at the top of the screen. As an example, the URL
http://odetocode.com/Blogs/scott/archive/2011/11/29/programming-windows-8-
the-sublime-to-the-strange.aspx#feedback has the fragment value "feedback". If you
follow the URL, your web browser should scroll down the page to show the feedback section of
a particular blog post on my blog. Your browser retrieved the entire resource (the blog post), but
focused your attention to a specific area—the feedback section. You can imagine the HTML for
the blog post looking like the following (with all the text content omitted):

<div id="post">
 ...
</div>
<div id="feedback">
 ...
</div>

14

The client makes sure the element with the “feedback” ID is at the top.

If we put together everything we've learned so far, we know a URL is broken into the following
pieces:

<scheme>://<host>:<port>/<path>?<query>#<fragment>

URL Encoding

All software developers who work with the web should be aware of character encoding issues
with URLs. The official documents describing URLs go to great lengths to make URLs as usable
and interoperable as possible. A URL should be as easy to communicate through email as it is
to print on a bumper sticker and affix to a 2001 Ford Windstar. For this reason, the Internet
standards define unsafe characters for URLs. For example, the space character is considered
unsafe because space characters can mistakenly appear or disappear when a URL is in printed
form (is that one space or two spaces on your business card?).

Other unsafe characters include the number sign (#) because it is used to delimit a fragment,
and the caret (^) because it isn't always transmitted correctly through all network devices. In
fact, RFC 3986 (the "law" for URLs), defines the safe characters for URLs to be the
alphanumeric characters in US-ASCII, plus a few special characters like the colon (:) and the
slash mark (/).

Fortunately, you can still transmit unsafe characters in a URL, but all unsafe characters must be
percent-encoded (aka URL encoded). %20 is the encoding for a space character (where 20 is
the hexadecimal value for the US-ASCII space character).

As an example, let's say you wanted to create the URL for a file named "^my resume.txt" on
someserver.com. The legal, encoded URL would look like:

http://someserver.com/%5Emy%20resume.txt

Both the ^ and space characters have been percent-encoded. Most web application frameworks
will provide an API for easy URL encoding. On the server side, you should run your dynamically
created URLs through an encoding API just in case one of the unsafe characters appears in the
URL.

Resources and Media Types

So far we've focused on URLs and simplified everything else. But, what does it mean when we
enter a URL into the browser? Typically it means we want to retrieve or view some resource.
There is a tremendous amount of material to view on the web, and later we'll also see how
HTTP also enables us to create, delete, and update resources. For now, we'll stay focused on
retrieval.

We haven't been very specific about the types of resources we want to retrieve. There are
thousands of different resource types on the web—images, hypertext documents, XML
documents, video, audio, executable applications, Microsoft Word documents, and countless
more.

15

In order for a host to properly serve a resource, and in order for a client to properly display a
resource, the parties involved have to be specific and precise about the type of the resource. Is
the resource an image? Is the resource a movie? We wouldn't want our web browsers to try
rendering a PNG image as text, and we wouldn't want them to try interpreting hypertext as an
image.

When a host responds to an HTTP request, it returns a resource and also specifies the content
type (also known as the media type) of the resource. We'll see the details of how the content
type appears in an HTTP message in the next chapter.

To specify content types, HTTP relies on the Multipurpose Internet Mail Extensions (MIME)
standards. Although MIME was originally designed for email communications, HTTP uses MIME
standards for the same purpose, which is to label the content in such a way that the client will
know what the content contains.

For example, when a client requests an HTML webpage, the host can respond to the HTTP
request with some HTML that it labels as "text/html". The "text" part is the primary media
type, and the "html" is the media subtype. When responding to the request for an image, the
host will label the resource with a content type of "image/jpeg" for JPG files, "image/gif" for
GIF files, or "image/png" for PNG files. Those content types are standard MIME types and are
literally what will appear in the HTTP response.

A Quick Note on File Extensions

You might think that a browser would rely on the file extension to determine the content type of
an incoming resource. For example, if my browser requests "frog.jpg" it should treat the
resource as a JPG file, but treat "frog.gif" as a GIF file. However, for most browsers, the file
extension is the last place it will go to determine the actual content type.

File extensions can be misleading, and just because we requested a JPG file doesn't mean the
server has to respond with data encoded in JPG format. Microsoft documents Internet Explorer
(IE) as first looking at the content type tag specified by the host. If the host doesn't provide a
content type, IE will then scan the first 200 bytes of the response trying to guess the content
type. Finally, if IE doesn't find a content type and can't guess the content type, it will fall back on
the file extension used in the request for the resource. This is one reason why the content type
label is important, but it is far from the only reason.

Content Type Negotiation

Although we tend to think of HTTP as something used to serve webpages, it turns out the HTTP
specification describes a flexible, generic protocol for moving high-fidelity information. Part of
the job of moving information around is making sure all the parties involved know how to
interpret the information, and this is why the media type settings are important.

However, media types aren't just for hosts. Clients can play a role in what media type a host
returns by taking part in a content type negotiation.

16

A resource identified by a single URL can have multiple representations. Take, for example,
the broccoli recipe we mentioned earlier. The single recipe might have representations in
different languages (English, French, and German). The recipe could even have representations
in different formats (HTML, PDF, and plain text). It's all the same resource and the same recipe,
but different representations.

The obvious question is: Which representation should the server select? The answer is in the
content negotiation mechanism described by the HTTP specification. When a client makes an
HTTP request to a URL, the client can specify the media types it will accept. The media types
are not only for the host to tag outgoing resources, but also for clients to specify the media type
they want to consume.

The client specifies what it will accept in the outgoing request message. Again, we'll see details
of this message in Chapter 2, but imagine a request to http://food.com/ saying it will accept
a representation in the German language. It's up to the server to try fulfilling the request. The
host might send a textual resource that is still in English, which will probably disappoint a
German-speaking user, but this is why we call it content negotiation and not content ultimatum.

Web browsers are sophisticated pieces of software that can deal with many different types of
resource representations. Content negotiation is something a user would probably never care
about, but for software developers (especially web service developers) content negotiation is
part of what makes HTTP great. A piece of code written in JavaScript can make a request to the
server and ask for a JSON representation. A piece of code written in C++ can make a request to
the server and ask for an XML representation. In both cases, if the host can satisfy the request,
the information will arrive at the client in an ideal format for parsing and consumption.

Where Are We?

At this point we've gotten about as far as we can go without getting into the nitty-gritty details of
what an HTTP message looks like. We've learned about URLs, URL encoding, and content
types. It's time to see what these content type specifications look like as they travel across the
wire.

