Skip to content

Commit a500ce7

Browse files
committed
modify the model
1 parent eadb0f9 commit a500ce7

File tree

3 files changed

+32
-12
lines changed

3 files changed

+32
-12
lines changed

tutorials/09 - Image Captioning/model.py

Lines changed: 12 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -10,9 +10,15 @@ def __init__(self, embed_size):
1010
"""Load pretrained ResNet-152 and replace top fc layer."""
1111
super(EncoderCNN, self).__init__()
1212
self.resnet = models.resnet152(pretrained=True)
13-
self.resnet.fc = nn.Linear(self.resnet.fc.in_features, embed_size)
13+
# For efficient memory usage.
1414
for param in self.resnet.parameters():
1515
param.requires_grad = False
16+
self.resnet.fc = nn.Linear(self.resnet.fc.in_features, embed_size)
17+
self.init_weights()
18+
19+
def init_weights(self):
20+
self.resnet.fc.weight.data.uniform_(-0.1, 0.1)
21+
self.resnet.fc.bias.data.fill_(0)
1622

1723
def forward(self, images):
1824
"""Extract image feature vectors."""
@@ -30,6 +36,11 @@ def __init__(self, embed_size, hidden_size, vocab_size, num_layers):
3036
self.embed = nn.Embedding(vocab_size, embed_size)
3137
self.lstm = nn.LSTM(embed_size, hidden_size, num_layers)
3238
self.linear = nn.Linear(hidden_size, vocab_size)
39+
40+
def init_weights(self):
41+
self.embed.weight.data.uniform_(-0.1, 0.1)
42+
self.linear.weigth.data.uniform_(-0.1, 0.1)
43+
self.linear.bias.data.fill_(0)
3344

3445
def forward(self, features, captions, lengths):
3546
"""Decode image feature vectors and generate caption."""

tutorials/09 - Image Captioning/sample.py

Lines changed: 11 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -1,13 +1,20 @@
11
import os
22
import numpy as np
33
import torch
4+
import torchvision.transforms as T
45
import pickle
56
import matplotlib.pyplot as plt
67
from PIL import Image
78
from model import EncoderCNN, DecoderRNN
89
from vocab import Vocabulary
910
from torch.autograd import Variable
1011

12+
# Image processing
13+
transform = T.Compose([
14+
T.CenterCrop(224),
15+
T.ToTensor(),
16+
T.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))])
17+
1118
# Hyper Parameters
1219
embed_size = 128
1320
hidden_size = 512
@@ -18,11 +25,10 @@
1825
vocab = pickle.load(f)
1926

2027
# Load an image array
21-
images = os.listdir('./data/val2014resized/')
22-
image_path = './data/val2014resized/' + images[12]
23-
with open(image_path, 'r+b') as f:
24-
img = np.asarray(Image.open(f))
25-
image = torch.from_numpy(img.transpose(2, 0, 1)).float().unsqueeze(0) / 255 - 0.5
28+
images = os.listdir('./data/train2014resized/')
29+
image_path = './data/train2014resized/' + images[12]
30+
img = Image.open(image_path)
31+
image = transform(img).unsqueeze(0)
2632

2733
# Load the trained models
2834
encoder = torch.load('./encoder.pkl')

tutorials/09 - Image Captioning/train.py

Lines changed: 9 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
from data import get_loader
22
from vocab import Vocabulary
3-
from models import EncoderCNN, DecoderRNN
3+
from model import EncoderCNN, DecoderRNN
44
from torch.autograd import Variable
55
from torch.nn.utils.rnn import pack_padded_sequence
66
import torch
@@ -10,17 +10,19 @@
1010
import pickle
1111

1212
# Hyper Parameters
13-
num_epochs = 5
14-
batch_size = 100
15-
embed_size = 128
13+
num_epochs = 1
14+
batch_size = 32
15+
embed_size = 256
1616
hidden_size = 512
17+
crop_size = 224
1718
num_layers = 1
1819
learning_rate = 0.001
1920
train_image_path = './data/train2014resized/'
2021
train_json_path = './data/annotations/captions_train2014.json'
2122

2223
# Image Preprocessing
2324
transform = T.Compose([
25+
T.RandomCrop(crop_size),
2426
T.RandomHorizontalFlip(),
2527
T.ToTensor(),
2628
T.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))])
@@ -42,7 +44,8 @@
4244

4345
# Loss and Optimizer
4446
criterion = nn.CrossEntropyLoss()
45-
optimizer = torch.optim.Adam(decoder.parameters(), lr=learning_rate)
47+
params = list(decoder.parameters()) + list(encoder.resnet.fc.parameters())
48+
optimizer = torch.optim.Adam(params, lr=learning_rate)
4649

4750
# Train the Decoder
4851
for epoch in range(num_epochs):
@@ -63,7 +66,7 @@
6366
if i % 100 == 0:
6467
print('Epoch [%d/%d], Step [%d/%d], Loss: %.4f, Perplexity: %5.4f'
6568
%(epoch, num_epochs, i, total_step, loss.data[0], np.exp(loss.data[0])))
66-
69+
6770
# Save the Model
6871
torch.save(decoder, 'decoder.pkl')
6972
torch.save(encoder, 'encoder.pkl')

0 commit comments

Comments
 (0)