Skip to content

Commit fcb53f3

Browse files
committed
add examples to pytorch basics
1 parent a06526b commit fcb53f3

File tree

1 file changed

+97
-25
lines changed
  • tutorials/00 - PyTorch Basics

1 file changed

+97
-25
lines changed

tutorials/00 - PyTorch Basics/main.py

Lines changed: 97 additions & 25 deletions
Original file line numberDiff line numberDiff line change
@@ -8,42 +8,104 @@
88
from torch.autograd import Variable
99

1010

11-
# Create a torch tensor with random normal.
12-
x = torch.randn(5, 3)
13-
print (x)
14-
15-
# Build a layer.
11+
#========================== Table of Contents ==========================#
12+
# 1. Basic autograd example 1 (Line 21 to 36)
13+
# 2. Basic autograd example 2 (Line 39 to 80)
14+
# 3. Loading data from numpy (Line 83 to 86)
15+
# 4. Implementing the input pipline (Line 90 to 117)
16+
# 5. Input pipline for custom dataset (Line 119 to 139)
17+
# 6. Using pretrained model (Line142 to 156)
18+
# 7. Save and load model (Line 159 to L161)
19+
20+
21+
#======================= Basic autograd example 1 =======================#
22+
# Create tensors.
23+
x = Variable(torch.Tensor([1]), requires_grad=True)
24+
w = Variable(torch.Tensor([2]), requires_grad=True)
25+
b = Variable(torch.Tensor([3]), requires_grad=True)
26+
27+
# Build a computational graph.
28+
y = w * x + b # y = 2 * x + 3
29+
30+
# Compute gradients
31+
y.backward()
32+
33+
# Print out the gradients
34+
print(x.grad) # x.grad = 2
35+
print(w.grad) # w.grad = 1
36+
print(b.grad) # b.grad = 1
37+
38+
39+
#======================== Basic autograd example 2 =======================#
40+
# Create tensors.
41+
x = Variable(torch.randn(5, 3))
42+
y = Variable(torch.randn(5, 2))
43+
print ('x: ', x)
44+
print ('y: ', y)
45+
46+
# Build a linear layer.
1647
linear = nn.Linear(3, 2)
17-
print (linear.weight)
18-
print (linear.bias)
48+
print ('w: ', linear.weight)
49+
print ('b: ', linear.bias)
50+
51+
# Build Loss and Optimizer.
52+
criterion = nn.MSELoss()
53+
optimizer = torch.optim.SGD(linear.parameters(), lr=0.01)
54+
55+
# Forward propagation.
56+
pred = linear(x)
57+
print('pred: ', pred)
58+
59+
# Compute loss.
60+
loss = criterion(pred, y)
61+
print('loss: ', loss.data[0])
62+
63+
# Backpropagation.
64+
loss.backward()
65+
66+
# Print out the gradients.
67+
print ('dL/dw: ', linear.weight.grad)
68+
print ('dL/db: ', linear.bias.grad)
69+
70+
# 1-step Optimization (gradient descent).
71+
optimizer.step()
72+
print ('Optimized..!')
1973

20-
# Forward propagate.
21-
y = linear(Variable(x))
22-
print (y)
74+
# You can also do optimization at the low level as shown below.
75+
# linear.weight.data.sub_(0.01 * linear.weight.grad.data)
76+
# linear.bias.data.sub_(0.01 * linear.bias.grad.data)
2377

24-
# Convert numpy array to torch tensor.
78+
# Print out the loss after optimization.
79+
loss = criterion(pred, y)
80+
print('loss after 1 step optimization: ', loss.data[0])
81+
82+
83+
#======================== Loading data from numpy ========================#
2584
a = np.array([[1,2], [3,4]])
2685
b = torch.from_numpy(a)
2786
print (b)
2887

29-
# Download and load cifar10 dataset .
30-
train_dataset = dsets.CIFAR10(root='./data/',
88+
89+
90+
#===================== Implementing the input pipline =====================#
91+
# Download and construct dataset.
92+
train_dataset = dsets.CIFAR10(root='../data/',
3193
train=True,
3294
transform=transforms.ToTensor(),
3395
download=True)
3496

35-
# Select one data pair.
97+
# Select one data pair (read data from disk).
3698
image, label = train_dataset[0]
3799
print (image.size())
38100
print (label)
39101

40-
# Input pipeline (this provides queue and thread in a very simple way).
102+
# Data Loader (this provides queue and thread in a very simple way).
41103
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
42104
batch_size=100,
43105
shuffle=True,
44106
num_workers=2)
45107

46-
# When iteration starts, queue and thread start to load dataset.
108+
# When iteration starts, queue and thread start to load dataset from files.
47109
data_iter = iter(train_loader)
48110

49111
# Mini-batch images and labels.
@@ -54,36 +116,46 @@
54116
# Your training code will be written here
55117
pass
56118

57-
# Build custom dataset.
119+
#===================== Input pipline for custom dataset =====================#
120+
# You should build custom dataset as below.
58121
class CustomDataset(data.Dataset):
59122
def __init__(self):
123+
# TODO
124+
# 1. Initialize file path or list of file names.
60125
pass
61126
def __getitem__(self, index):
62127
# TODO
63-
# 1. Read one data from file (e.g. using np.fromfile, PIL.Image.open).
128+
# 1. Read one data from file (e.g. using numpy.fromfile, PIL.Image.open).
64129
# 2. Return a data pair (e.g. image and label).
65130
pass
66131
def __len__(self):
67132
# You should change 0 to the total size of your dataset.
68133
return 0
69134

135+
# Then, you can just use prebuilt torch's data loader.
70136
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
71137
batch_size=100,
72138
shuffle=True,
73139
num_workers=2)
74140

75141

76-
# Download and load pretrained model.
142+
#========================== Using pretrained model ==========================#
143+
# Download and load pretrained resnet.
77144
resnet = torchvision.models.resnet18(pretrained=True)
78145

79-
# Detach top layer for finetuning.
80-
sub_model = nn.Sequential(*list(resnet.children())[:-1])
146+
# If you want to finetune only top layer of the model.
147+
for param in resnet.parameters():
148+
param.requires_grad = False
149+
150+
# Replace top layer for finetuning.
151+
resnet.fc = nn.Linear(resnet.fc.in_features, 100) # 100 is for example.
81152

82153
# For test
83154
images = Variable(torch.randn(10, 3, 256, 256))
84-
print (resnet(images).size())
85-
print (sub_model(images).size())
155+
outputs = resnet(images)
156+
print (outputs.size()) # (10, 100)
157+
86158

87-
# Save and load the model.
88-
torch.save(sub_model, 'model.pkl')
159+
#============================ Save and load model ============================#
160+
torch.save(resnet, 'model.pkl')
89161
model = torch.load('model.pkl')

0 commit comments

Comments
 (0)