@@ -29,8 +29,8 @@ def build_wl_coref_model(
29
29
dim = 768
30
30
31
31
with Model .define_operators ({">>" : chain }):
32
- coref_scorer = PyTorchWrapper (
33
- CorefScorer (
32
+ coref_clusterer = PyTorchWrapper (
33
+ CorefClusterer (
34
34
dim ,
35
35
distance_embedding_size ,
36
36
hidden_size ,
@@ -39,14 +39,14 @@ def build_wl_coref_model(
39
39
antecedent_limit ,
40
40
antecedent_batch_size ,
41
41
),
42
- convert_inputs = convert_coref_scorer_inputs ,
43
- convert_outputs = convert_coref_scorer_outputs ,
42
+ convert_inputs = convert_coref_clusterer_inputs ,
43
+ convert_outputs = convert_coref_clusterer_outputs ,
44
44
)
45
- coref_model = tok2vec >> coref_scorer
45
+ coref_model = tok2vec >> coref_clusterer
46
46
return coref_model
47
47
48
48
49
- def convert_coref_scorer_inputs (
49
+ def convert_coref_clusterer_inputs (
50
50
model : Model ,
51
51
X : List [Floats2d ],
52
52
is_train : bool
@@ -65,7 +65,7 @@ def backprop(args: ArgsKwargs) -> List[Floats2d]:
65
65
return ArgsKwargs (args = (word_features , ), kwargs = {}), backprop
66
66
67
67
68
- def convert_coref_scorer_outputs (model : Model , inputs_outputs , is_train : bool ):
68
+ def convert_coref_clusterer_outputs (model : Model , inputs_outputs , is_train : bool ):
69
69
_ , outputs = inputs_outputs
70
70
scores , indices = outputs
71
71
@@ -81,7 +81,7 @@ def convert_for_torch_backward(dY: Floats2d) -> ArgsKwargs:
81
81
return (scores_xp , indices_xp ), convert_for_torch_backward
82
82
83
83
84
- class CorefScorer (torch .nn .Module ):
84
+ class CorefClusterer (torch .nn .Module ):
85
85
"""
86
86
Combines all coref modules together to find coreferent token pairs.
87
87
Submodules (in the order of their usage in the pipeline):
0 commit comments