@@ -226,54 +226,6 @@ def test_overfitting_IO():
226
226
assert_equal (batch_cats_1 , no_batch_cats )
227
227
228
228
229
- @pytest .mark .skip (reason = "TODO: Can this be removed?" )
230
- def test_overfitting_IO_multi_old ():
231
- # Simple test to try and quickly overfit the multi-label textcat component - ensuring the ML models work correctly
232
- fix_random_seed (0 )
233
- nlp = English ()
234
- # Set exclusive labels to False
235
- config = {"model" : {"linear_model" : {"exclusive_classes" : False }}}
236
- textcat = nlp .add_pipe ("textcat" , config = config )
237
- train_examples = []
238
- for text , annotations in TRAIN_DATA_MULTI_LABEL :
239
- train_examples .append (Example .from_dict (nlp .make_doc (text ), annotations ))
240
- optimizer = nlp .initialize (get_examples = lambda : train_examples )
241
- assert textcat .model .get_dim ("nO" ) == 2
242
-
243
- for i in range (50 ):
244
- losses = {}
245
- nlp .update (train_examples , sgd = optimizer , losses = losses )
246
- assert losses ["textcat" ] < 0.01
247
-
248
- # test the trained model
249
- test_text = "I am happy."
250
- doc = nlp (test_text )
251
- cats = doc .cats
252
- assert cats ["POSITIVE" ] > 0.9
253
-
254
- # Also test the results are still the same after IO
255
- with make_tempdir () as tmp_dir :
256
- nlp .to_disk (tmp_dir )
257
- nlp2 = util .load_model_from_path (tmp_dir )
258
- doc2 = nlp2 (test_text )
259
- cats2 = doc2 .cats
260
- assert cats2 ["POSITIVE" ] > 0.9
261
-
262
- # Test scoring
263
- scores = nlp .evaluate (train_examples )
264
- assert scores ["cats_micro_f" ] == 1.0
265
- assert scores ["cats_score" ] == 1.0
266
- assert "cats_score_desc" in scores
267
-
268
- # Make sure that running pipe twice, or comparing to call, always amounts to the same predictions
269
- texts = ["Just a sentence." , "I like green eggs." , "I am happy." , "I eat ham." ]
270
- batch_cats_1 = [doc .cats for doc in nlp .pipe (texts )]
271
- batch_cats_2 = [doc .cats for doc in nlp .pipe (texts )]
272
- no_batch_cats = [doc .cats for doc in [nlp (text ) for text in texts ]]
273
- assert_equal (batch_cats_1 , batch_cats_2 )
274
- assert_equal (batch_cats_1 , no_batch_cats )
275
-
276
-
277
229
def test_overfitting_IO_multi ():
278
230
# Simple test to try and quickly overfit the multi-label textcat component - ensuring the ML models work correctly
279
231
fix_random_seed (0 )
0 commit comments