@@ -62,7 +62,7 @@ def __init__(self, rng, input, n_in, n_out, W=None, b=None,
62
62
63
63
:type activation: theano.Op or function
64
64
:param activation: Non linearity to be applied in the hidden
65
- layer
65
+ layer
66
66
"""
67
67
self .input = input
68
68
@@ -219,7 +219,7 @@ def test_mlp(learning_rate=0.01, L1_reg=0.00, L2_reg=0.0001, n_epochs=1000,
219
219
print '... building the model'
220
220
221
221
# allocate symbolic variables for the data
222
- index = T .lscalar () # index to a [mini]batch
222
+ index = T .lscalar () # index to a [mini]batch
223
223
x = T .matrix ('x' ) # the data is presented as rasterized images
224
224
y = T .ivector ('y' ) # the labels are presented as 1D vector of
225
225
# [int] labels
@@ -259,10 +259,10 @@ def test_mlp(learning_rate=0.01, L1_reg=0.00, L2_reg=0.0001, n_epochs=1000,
259
259
260
260
# specify how to update the parameters of the model as a dictionary
261
261
updates = {}
262
- # given two list the zip A = [ a1,a2,a3,a4] and B = [b1,b2,b3,b4] of
262
+ # given two list the zip A = [a1, a2, a3, a4] and B = [b1, b2, b3, b4] of
263
263
# same length, zip generates a list C of same size, where each element
264
264
# is a pair formed from the two lists :
265
- # C = [ (a1,b1), (a2,b2), (a3,b3) , (a4,b4) ]
265
+ # C = [(a1, b1), (a2, b2), (a3, b3), (a4, b4)]
266
266
for param , gparam in zip (classifier .params , gparams ):
267
267
updates [param ] = param - learning_rate * gparam
268
268
0 commit comments