@@ -96,20 +96,21 @@ def approx2(signal, pos0, pos1, method=INTERP.LINEAR, off_grid=0.0):
96
96
97
97
def interp1d (x_interpolated , x_input , signal_input , method = INTERP .LINEAR , off_grid = 0.0 ):
98
98
"""
99
- One-dimensional linear interpolation.Interpolation is performed along axis 0.
99
+ One-dimensional linear interpolation.Interpolation is performed along axis 0
100
+ of the input array.
100
101
101
102
Parameters
102
103
----------
103
104
104
- x : af.Array
105
- The x-coordinates of the interpolated values . The interpolation function
106
- is queried at these set of points.
105
+ x_interpolated : af.Array
106
+ The x-coordinates of the interpolation points . The interpolation
107
+ function is queried at these set of points.
107
108
108
109
x : af.Array
109
- The x-coordinates of the data points
110
+ The x-coordinates of the input data points
110
111
111
112
signal_input: af.Array
112
- Input signal array(uniform data )
113
+ Input signal array (signal = f(x) )
113
114
114
115
method: optional: af.INTERP. default: af.INTERP.LINEAR.
115
116
Interpolation method.
@@ -128,6 +129,56 @@ def interp1d(x_interpolated, x_input, signal_input, method=INTERP.LINEAR, off_gr
128
129
129
130
return approx1 (signal_input , pos0 , method , off_grid )
130
131
132
+
133
+ def interp2d (x_interpolated , x_input , y_interpolated , y_input ,
134
+ signal_input , method = INTERP .LINEAR , off_grid = 0.0
135
+ ):
136
+ """
137
+ Two-dimensional linear interpolation.Interpolation is performed along axes 0 and 1
138
+ of the input array.
139
+
140
+ Parameters
141
+ ----------
142
+
143
+ x_interpolated : af.Array
144
+ The x-coordinates of the interpolation points. The interpolation
145
+ function is queried at these set of points.
146
+
147
+ x : af.Array
148
+ The x-coordinates of the input data points. The convention followed is that
149
+ the x-coordinates vary along axis 0
150
+
151
+ y_interpolated : af.Array
152
+ The y-coordinates of the interpolation points. The interpolation
153
+ function is queried at these set of points.
154
+
155
+ y : af.Array
156
+ The y-coordinates of the input data points. The convention followed is that
157
+ the y-coordinates vary along axis 1
158
+
159
+ signal_input: af.Array
160
+ Input signal array (signal = f(x, y))
161
+
162
+ method: optional: af.INTERP. default: af.INTERP.LINEAR.
163
+ Interpolation method.
164
+
165
+ off_grid: optional: scalar. default: 0.0.
166
+ The value used for positions outside the range.
167
+
168
+ Returns
169
+ -------
170
+
171
+ output: af.Array
172
+ Values calculated at interpolation points.
173
+ """
174
+ dx = sum (x_input [1 , 0 , 0 , 0 ] - x_input [0 , 0 , 0 , 0 ])
175
+ dy = sum (y_input [0 , 1 , 0 , 0 ] - y_input [0 , 0 , 0 , 0 ])
176
+
177
+ pos0 = (x_interpolated - sum (x_input [0 , 0 , 0 , 0 ]))/ dx
178
+ pos1 = (y_interpolated - sum (y_input [0 , 0 , 0 , 0 ]))/ dy
179
+
180
+ return approx2 (signal_input , pos0 , pos1 , method , off_grid )
181
+
131
182
def fft (signal , dim0 = None , scale = None ):
132
183
"""
133
184
Fast Fourier Transform: 1D
0 commit comments