|
| 1 | +from torch.utils.data import Dataset, DataLoader |
| 2 | +from torchvision.datasets import ImageFolder |
| 3 | +from torchvision.transforms import transforms |
| 4 | +import torch |
| 5 | +from model import Identity |
| 6 | +from torchvision.utils import save_image |
| 7 | +from general import incremental_filename, check_path |
| 8 | +import gc |
| 9 | +from general import set_logger |
| 10 | +from tqdm import tqdm |
| 11 | +import numpy as np |
| 12 | +logger = set_logger(__name__, mode='a') |
| 13 | + |
| 14 | + |
| 15 | +# ~~~~~~~~~~~~~~~~~~~~~ image tranforms ~~~~~~~~~~~~~~~~~~~~~ # |
| 16 | + |
| 17 | +train_t = transforms.Compose([ |
| 18 | + transforms.RandomRotation(15), |
| 19 | + transforms.RandomResizedCrop(224), |
| 20 | + transforms.RandomHorizontalFlip(), |
| 21 | + transforms.Resize((220, 220)), |
| 22 | + transforms.ToTensor(), |
| 23 | + transforms.Normalize([0.3417, 0.3126, 0.3216], |
| 24 | + [0.168, 0.1678, 0.178]) |
| 25 | +]) |
| 26 | + |
| 27 | + |
| 28 | +trans = transforms.Compose([ |
| 29 | + transforms.Resize((220, 220)), |
| 30 | + transforms.ToTensor(), |
| 31 | + transforms.Normalize([0.3417, 0.3126, 0.3216], |
| 32 | + [0.168, 0.1678, 0.178]) |
| 33 | +]) |
| 34 | + |
| 35 | +# ~~~~~~~~~~~~~~~~~~~~~ helper functions ~~~~~~~~~~~~~~~~~~~~~ # |
| 36 | + |
| 37 | + |
| 38 | +def create_one_hot(n, idx): |
| 39 | + one_hot = torch.zeros(idx.shape[0], n) |
| 40 | + one_hot.scatter_(1, idx.unsqueeze(1), 1) |
| 41 | + return one_hot |
| 42 | + |
| 43 | + |
| 44 | +class TrafficDataSet(Dataset): |
| 45 | + |
| 46 | + """Returns triplet images (anchor, positive, and Negative) along with the class |
| 47 | + in [ai,pi,ni,cl] format. |
| 48 | + Args: |
| 49 | + dir:Dataset directory. this should be readable by |
| 50 | + torchvision.datasets.ImageFolder instance. |
| 51 | + model: torch.nn.Module instance. |
| 52 | + """ |
| 53 | + |
| 54 | + def __init__(self, dir, model): |
| 55 | + super().__init__() |
| 56 | + self.trans = transforms.Compose([ |
| 57 | + transforms.Resize((220, 220)), |
| 58 | + transforms.ToTensor(), |
| 59 | + transforms.Normalize([0.3417, 0.3126, 0.3216], |
| 60 | + [0.168, 0.1678, 0.178]) |
| 61 | + ]) |
| 62 | + self.train_t = transforms.Compose([ |
| 63 | + transforms.RandomRotation(15), |
| 64 | + transforms.RandomResizedCrop(224), |
| 65 | + transforms.RandomHorizontalFlip(), |
| 66 | + transforms.Resize((220, 220)), |
| 67 | + transforms.ToTensor(), |
| 68 | + transforms.Normalize([0.3417, 0.3126, 0.3216], |
| 69 | + [0.168, 0.1678, 0.178]) |
| 70 | + ]) |
| 71 | + |
| 72 | + self.data = ImageFolder(dir, self.trans) |
| 73 | + self.class_len = len(self.data.classes) |
| 74 | + self.loader = DataLoader(self.data, 128, True) |
| 75 | + self.dataset = [] |
| 76 | + self.update_dataset_random_choice() |
| 77 | + |
| 78 | + def update_dataset_using_norm(self, model): |
| 79 | + dataset = [] |
| 80 | + model.eval() |
| 81 | + with torch.no_grad(): |
| 82 | + logger.info('started updating dataset') |
| 83 | + for img, label in self.loader: |
| 84 | + train_norm = model(img) |
| 85 | + p_hot = create_one_hot(self.class_len, label) |
| 86 | + n_hot = torch.abs(p_hot - 1) |
| 87 | + |
| 88 | + for cl in range(len(label)): |
| 89 | + pi_entries = (label == cl).type(torch.uint8) |
| 90 | + |
| 91 | + if pi_entries.sum() > 1: |
| 92 | + c_p_hot = p_hot[:, cl] |
| 93 | + c_n_hot = n_hot[:, cl] |
| 94 | + pi_entries = torch.nonzero( |
| 95 | + pi_entries, as_tuple=True) |
| 96 | + |
| 97 | + for ai in pi_entries[0]: |
| 98 | + norm_matrix = torch.sqrt( |
| 99 | + torch.sum( |
| 100 | + (train_norm[ai]-train_norm)**2, dim=-1) |
| 101 | + ).squeeze() |
| 102 | + |
| 103 | + pi_score, pi = torch.max( |
| 104 | + norm_matrix*c_p_hot, dim=-1) |
| 105 | + assert torch.numel( |
| 106 | + pi) == 1, (f'pi size is {torch.numel(pi)}.' + |
| 107 | + ' it should be 1') |
| 108 | + |
| 109 | + norm_matrix_n = torch.where( |
| 110 | + norm_matrix > pi_score, norm_matrix, torch.tensor(0.0)) |
| 111 | + |
| 112 | + ni = torch.argmin(norm_matrix_n*c_n_hot, dim=-1) |
| 113 | + assert torch.numel( |
| 114 | + ni) == 1, (f'ni size is {torch.numel(ni)}.' + |
| 115 | + ' it should be 1') |
| 116 | + |
| 117 | + dataset.append([img[ai], img[pi], img[ni], cl]) |
| 118 | + logger.info( |
| 119 | + f'class:{cl} |anchor:{ai} |positive:{pi}' + |
| 120 | + f'|negative: {ni}') |
| 121 | + logger.info(f"dataset size:{len(dataset)}") |
| 122 | + |
| 123 | + self.dataset = dataset |
| 124 | + del dataset |
| 125 | + |
| 126 | + def update_dataset_random_choice(self): |
| 127 | + dataset = [] |
| 128 | + for img, label in tqdm(self.loader): |
| 129 | + for cl in range(len(label)): |
| 130 | + pi_entries = np.array((label == cl).nonzero(as_tuple=True)[0]) |
| 131 | + ni_entries = np.array((label != cl).nonzero(as_tuple=True)[0]) |
| 132 | + |
| 133 | + if pi_entries.sum() > 1: |
| 134 | + |
| 135 | + for ai in pi_entries: |
| 136 | + pi = np.random.choice(pi_entries, 1)[0] |
| 137 | + |
| 138 | + assert pi.size == 1, (f'pi size is {torch.numel(pi)}.' + |
| 139 | + ' it should be 1') |
| 140 | + |
| 141 | + ni = np.random.choice(ni_entries, 1)[0] |
| 142 | + |
| 143 | + assert ni.size == 1, (f'ni size is {torch.numel(ni)}.' + |
| 144 | + ' it should be 1') |
| 145 | + |
| 146 | + # logger.info( |
| 147 | + # f'class:{cl} |anchor:{ai} |positive:{pi}' + |
| 148 | + # f'|negative: {ni}') |
| 149 | + dataset.append([img[ai], img[pi], img[ni], cl]) |
| 150 | + logger.info(f"dataset size:{len(dataset)}") |
| 151 | + |
| 152 | + self.dataset = dataset |
| 153 | + del dataset |
| 154 | + |
| 155 | + def __getitem__(self, idx): |
| 156 | + |
| 157 | + ai = self.dataset[idx][0] |
| 158 | + pi = self.dataset[idx][1] |
| 159 | + ni = self.dataset[idx][2] |
| 160 | + cl = self.dataset[idx][3] |
| 161 | + # ai = self.ai_transforms(ai) |
| 162 | + # pi = self.pi_transforms(pi) |
| 163 | + # ni = self.ni_transforms(ni) |
| 164 | + return [ai, pi, ni, cl] |
| 165 | + |
| 166 | + def __len__(self): |
| 167 | + return len(self.dataset) |
| 168 | + |
| 169 | + |
| 170 | +def get_hash_matrix(model, dir, device): |
| 171 | + |
| 172 | + device = device |
| 173 | + check_path(dir) |
| 174 | + |
| 175 | + data = ImageFolder(dir, transform=trans) |
| 176 | + loader = DataLoader(data, 128, False) |
| 177 | + |
| 178 | + with torch.no_grad(): |
| 179 | + for x, _ in loader: |
| 180 | + x = x.to(device) |
| 181 | + y_hat = model(x) |
| 182 | + |
| 183 | + return y_hat |
| 184 | + |
| 185 | + |
| 186 | +if __name__ == "__main__": |
| 187 | + |
| 188 | + dir = '/home/user/datasets/GTSRB' |
| 189 | + model = Identity() |
| 190 | + data = TrafficDataSet(dir, model) |
| 191 | + logger.info( |
| 192 | + 'enter an index for saving the data point\n enter q to quit...\n') |
| 193 | + |
| 194 | + key = input("index number: ") |
| 195 | + |
| 196 | + while key != 'q': |
| 197 | + |
| 198 | + assert key.isnumeric(), f'expecting an integer got {type(key)}' |
| 199 | + key = int(key) |
| 200 | + if key >= 0 and key < len(data): |
| 201 | + img = torch.stack(data[key][:3], dim=0) |
| 202 | + file_name = incremental_filename('identity/data_point', 'entry') |
| 203 | + save_image(img, file_name) |
| 204 | + logger.info(f'file saved as {file_name}\n') |
| 205 | + key = input('next index:') |
| 206 | + else: |
| 207 | + logger.info(f'entered value: {key} is out of range.' + |
| 208 | + f'current range is 0 to {len(data)-1}') |
| 209 | + key = input('next index:') |
| 210 | + |
| 211 | + gc.collect() |
0 commit comments