|
| 1 | +package DataMining_DBSCAN; |
| 2 | + |
| 3 | +import java.io.BufferedReader; |
| 4 | +import java.io.File; |
| 5 | +import java.io.FileReader; |
| 6 | +import java.io.IOException; |
| 7 | +import java.text.MessageFormat; |
| 8 | +import java.util.ArrayList; |
| 9 | + |
| 10 | +/** |
| 11 | + * DBSCAN基于密度聚类算法工具类 |
| 12 | + * |
| 13 | + * @author lyq |
| 14 | + * |
| 15 | + */ |
| 16 | +public class DBSCANTool { |
| 17 | + // 测试数据文件地址 |
| 18 | + private String filePath; |
| 19 | + // 簇扫描半径 |
| 20 | + private double eps; |
| 21 | + // 最小包含点数阈值 |
| 22 | + private int minPts; |
| 23 | + // 所有的数据坐标点 |
| 24 | + private ArrayList<Point> totalPoints; |
| 25 | + // 聚簇结果 |
| 26 | + private ArrayList<ArrayList<Point>> resultClusters; |
| 27 | + //噪声数据 |
| 28 | + private ArrayList<Point> noisePoint; |
| 29 | + |
| 30 | + public DBSCANTool(String filePath, double eps, int minPts) { |
| 31 | + this.filePath = filePath; |
| 32 | + this.eps = eps; |
| 33 | + this.minPts = minPts; |
| 34 | + readDataFile(); |
| 35 | + } |
| 36 | + |
| 37 | + /** |
| 38 | + * 从文件中读取数据 |
| 39 | + */ |
| 40 | + public void readDataFile() { |
| 41 | + File file = new File(filePath); |
| 42 | + ArrayList<String[]> dataArray = new ArrayList<String[]>(); |
| 43 | + |
| 44 | + try { |
| 45 | + BufferedReader in = new BufferedReader(new FileReader(file)); |
| 46 | + String str; |
| 47 | + String[] tempArray; |
| 48 | + while ((str = in.readLine()) != null) { |
| 49 | + tempArray = str.split(" "); |
| 50 | + dataArray.add(tempArray); |
| 51 | + } |
| 52 | + in.close(); |
| 53 | + } catch (IOException e) { |
| 54 | + e.getStackTrace(); |
| 55 | + } |
| 56 | + |
| 57 | + Point p; |
| 58 | + totalPoints = new ArrayList<>(); |
| 59 | + for (String[] array : dataArray) { |
| 60 | + p = new Point(array[0], array[1]); |
| 61 | + totalPoints.add(p); |
| 62 | + } |
| 63 | + } |
| 64 | + |
| 65 | + /** |
| 66 | + * 递归的寻找聚簇 |
| 67 | + * |
| 68 | + * @param pointList |
| 69 | + * 当前的点列表 |
| 70 | + * @param parentCluster |
| 71 | + * 父聚簇 |
| 72 | + */ |
| 73 | + private void recursiveCluster(Point point, ArrayList<Point> parentCluster) { |
| 74 | + double distance = 0; |
| 75 | + ArrayList<Point> cluster; |
| 76 | + |
| 77 | + // 如果已经访问过了,则跳过 |
| 78 | + if (point.isVisited) { |
| 79 | + return; |
| 80 | + } |
| 81 | + |
| 82 | + point.isVisited = true; |
| 83 | + cluster = new ArrayList<>(); |
| 84 | + for (Point p2 : totalPoints) { |
| 85 | + // 过滤掉自身的坐标点 |
| 86 | + if (point.isTheSame(p2)) { |
| 87 | + continue; |
| 88 | + } |
| 89 | + |
| 90 | + distance = point.ouDistance(p2); |
| 91 | + if (distance <= eps) { |
| 92 | + // 如果聚类小于给定的半径,则加入簇中 |
| 93 | + cluster.add(p2); |
| 94 | + } |
| 95 | + } |
| 96 | + |
| 97 | + if (cluster.size() >= minPts) { |
| 98 | + // 将自己也加入到聚簇中 |
| 99 | + cluster.add(point); |
| 100 | + // 如果附近的节点个数超过最下值,则加入到父聚簇中,同时去除重复的点 |
| 101 | + addCluster(parentCluster, cluster); |
| 102 | + |
| 103 | + for (Point p : cluster) { |
| 104 | + recursiveCluster(p, parentCluster); |
| 105 | + } |
| 106 | + } |
| 107 | + } |
| 108 | + |
| 109 | + /** |
| 110 | + * 往父聚簇中添加局部簇坐标点 |
| 111 | + * |
| 112 | + * @param parentCluster |
| 113 | + * 原始父聚簇坐标点 |
| 114 | + * @param cluster |
| 115 | + * 待合并的聚簇 |
| 116 | + */ |
| 117 | + private void addCluster(ArrayList<Point> parentCluster, |
| 118 | + ArrayList<Point> cluster) { |
| 119 | + boolean isCotained = false; |
| 120 | + ArrayList<Point> addPoints = new ArrayList<>(); |
| 121 | + |
| 122 | + for (Point p : cluster) { |
| 123 | + isCotained = false; |
| 124 | + for (Point p2 : parentCluster) { |
| 125 | + if (p.isTheSame(p2)) { |
| 126 | + isCotained = true; |
| 127 | + break; |
| 128 | + } |
| 129 | + } |
| 130 | + |
| 131 | + if (!isCotained) { |
| 132 | + addPoints.add(p); |
| 133 | + } |
| 134 | + } |
| 135 | + |
| 136 | + parentCluster.addAll(addPoints); |
| 137 | + } |
| 138 | + |
| 139 | + /** |
| 140 | + * dbScan算法基于密度的聚类 |
| 141 | + */ |
| 142 | + public void dbScanCluster() { |
| 143 | + ArrayList<Point> cluster = null; |
| 144 | + resultClusters = new ArrayList<>(); |
| 145 | + noisePoint = new ArrayList<>(); |
| 146 | + |
| 147 | + for (Point p : totalPoints) { |
| 148 | + if(p.isVisited){ |
| 149 | + continue; |
| 150 | + } |
| 151 | + |
| 152 | + cluster = new ArrayList<>(); |
| 153 | + recursiveCluster(p, cluster); |
| 154 | + |
| 155 | + if (cluster.size() > 0) { |
| 156 | + resultClusters.add(cluster); |
| 157 | + }else{ |
| 158 | + noisePoint.add(p); |
| 159 | + } |
| 160 | + } |
| 161 | + removeFalseNoise(); |
| 162 | + |
| 163 | + printClusters(); |
| 164 | + } |
| 165 | + |
| 166 | + /** |
| 167 | + * 移除被错误分类的噪声点数据 |
| 168 | + */ |
| 169 | + private void removeFalseNoise(){ |
| 170 | + ArrayList<Point> totalCluster = new ArrayList<>(); |
| 171 | + ArrayList<Point> deletePoints = new ArrayList<>(); |
| 172 | + |
| 173 | + //将聚簇合并 |
| 174 | + for(ArrayList<Point> list: resultClusters){ |
| 175 | + totalCluster.addAll(list); |
| 176 | + } |
| 177 | + |
| 178 | + for(Point p: noisePoint){ |
| 179 | + for(Point p2: totalCluster){ |
| 180 | + if(p2.isTheSame(p)){ |
| 181 | + deletePoints.add(p); |
| 182 | + } |
| 183 | + } |
| 184 | + } |
| 185 | + |
| 186 | + noisePoint.removeAll(deletePoints); |
| 187 | + } |
| 188 | + |
| 189 | + /** |
| 190 | + * 输出聚类结果 |
| 191 | + */ |
| 192 | + private void printClusters() { |
| 193 | + int i = 1; |
| 194 | + for (ArrayList<Point> pList : resultClusters) { |
| 195 | + System.out.print("聚簇" + (i++) + ":"); |
| 196 | + for (Point p : pList) { |
| 197 | + System.out.print(MessageFormat.format("({0},{1}) ", p.x, p.y)); |
| 198 | + } |
| 199 | + System.out.println(); |
| 200 | + } |
| 201 | + |
| 202 | + System.out.println(); |
| 203 | + System.out.print("噪声数据:"); |
| 204 | + for (Point p : noisePoint) { |
| 205 | + System.out.print(MessageFormat.format("({0},{1}) ", p.x, p.y)); |
| 206 | + } |
| 207 | + System.out.println(); |
| 208 | + } |
| 209 | +} |
0 commit comments