|
| 1 | +# 洛谷线段树模板题 |
| 2 | + |
| 3 | +分块维护的数据结构: |
| 4 | + |
| 5 | +1. `st`表示第i号块的起点 |
| 6 | + |
| 7 | +2. `ed`表示第i号块的终点 |
| 8 | + |
| 9 | +3. `mark`表示第i号块整个区间打上的更新标记 |
| 10 | + |
| 11 | +4. `sum`表示第i号块离散加上的数据 |
| 12 | + |
| 13 | +5. `size`表示第i号块的大小 |
| 14 | + |
| 15 | +6. `bel`表示下标对应第i号块的位置 |
| 16 | + |
| 17 | +分块使得每次操作时间复杂度趋向于`O(sqrt(n))`,它的想法比较简单,但是码量却不小,对于某些题目,维护信息不满足交换律,可能使用分块优于线段树等 |
| 18 | + |
| 19 | +```c |
| 20 | +void solve(){ |
| 21 | + int n; cin >> n; |
| 22 | + vector<ll> a(n + 1); |
| 23 | + for (int i = 1; i <= n; i++) { |
| 24 | + cin >> a[i]; |
| 25 | + } |
| 26 | + int sq = sqrt(n); |
| 27 | + vector<ll> st(sq + 1), ed(sq + 1), size(sq + 1), sum(sq + 1), mark(sq + 1); |
| 28 | + for (int i = 1; i <= sq; i++) { |
| 29 | + st[i] = n / sq * (i - 1) + 1; |
| 30 | + ed[i] = n / sq * i; |
| 31 | + } |
| 32 | + ed[sq] = n; |
| 33 | + for (int i = 1; i <= sq; i++) { |
| 34 | + size[i] = ed[i] - st[i]; |
| 35 | + } |
| 36 | + vector<ll> bel(n + 1); |
| 37 | + for (int i = 1; i <= sq; i++) { |
| 38 | + for (int j = st[i]; j <= ed[i]; j++) { |
| 39 | + sum[i] += a[j]; |
| 40 | + bel[j] = i; |
| 41 | + } |
| 42 | + } |
| 43 | + auto add = [&](int x, int y, int k){ |
| 44 | + if(bel[x] == bel[y]){ |
| 45 | + for (int i = x; i <= y; i++) { |
| 46 | + a[i] += k; |
| 47 | + sum[bel[i]] += k; |
| 48 | + } |
| 49 | + } |
| 50 | + else{ |
| 51 | + for (int i = x; i <= ed[bel[x]]; i++) { |
| 52 | + a[i] += k; |
| 53 | + sum[bel[i]] += k; |
| 54 | + } |
| 55 | + for (int i = st[bel[y]]; i <= y; i++) { |
| 56 | + a[i] += k; |
| 57 | + sum[bel[i]] += k; |
| 58 | + } |
| 59 | + for (int i = bel[x] + 1; i < bel[y]; i++) { |
| 60 | + mark[i] += k; |
| 61 | + } |
| 62 | + } |
| 63 | + }; |
| 64 | + auto query = [&](int x, int y)->ll{ |
| 65 | + ll s = 0; |
| 66 | + if(bel[x] == bel[y]){ |
| 67 | + for (int i = x; i <= y; i++) { |
| 68 | + s += a[i] + mark[bel[i]]; |
| 69 | + } |
| 70 | + } |
| 71 | + else{ |
| 72 | + for (int i = x; i <= ed[bel[x]]; i++) { |
| 73 | + s += a[i] + mark[bel[i]]; |
| 74 | + } |
| 75 | + for (int i = st[bel[y]]; i <= y; i++) { |
| 76 | + s += a[i] + mark[bel[i]]; |
| 77 | + } |
| 78 | + for (int i = bel[x] + 1; i < bel[y]; i++) { |
| 79 | + s += sum[i] + mark[i] * size[i]; |
| 80 | + } |
| 81 | + } |
| 82 | + return s; |
| 83 | + }; |
| 84 | + for (int i = 0; i < n; i++) { |
| 85 | + int op, l, r, k; |
| 86 | + cin >> op >> l >> r >> k; |
| 87 | + if(op == 0){ |
| 88 | + add(l, r, k); |
| 89 | + } |
| 90 | + else{ |
| 91 | + cout << query(l, r) << endl; |
| 92 | + } |
| 93 | + } |
| 94 | +} |
| 95 | + |
| 96 | +``` |
0 commit comments