@@ -864,15 +864,15 @@ transitive relation that satisfies the following conditions.
864
864
if $T$ conforms to one of the [ type instances] ( #existential-types )
865
865
of ` $U$ forSome {$\,Q\,$} ` .
866
866
- If
867
- $T_i \equiv T' _ i $ for $i \in \{ 1 , \ldots , n\} $ and $U$ conforms to $U'$
867
+ $T_i \equiv T_i' $ for $i \in \{ 1 , \ldots , n\} $ and $U$ conforms to $U'$
868
868
then the method type $(p_1: T_1 , \ldots , p_n: T_n ) U$ conforms to
869
- $(p' _ 1 : T ' _ 1 , \ldots , p' _ n : T ' _ n ) U'$.
869
+ $(p_1' : T_1 ' , \ldots , p_n' : T_n ' ) U'$.
870
870
- The polymorphic type
871
871
$[ a_1 >: L_1 <: U_1 , \ldots , a_n >: L_n <: U_n] T$ conforms to the
872
872
polymorphic type
873
- $[ a_1 >: L' _ 1 <: U' _ 1 , \ldots , a_n >: L' _ n <: U' _ n ] T'$ if, assuming
874
- $L' _ 1 <: a_1 <: U' _ 1 , \ldots , L' _ n <: a_n <: U' _ n $
875
- one has $T <: T'$ and $L_i <: L' _ i $ and $U' _ i <: U_i$
873
+ $[ a_1 >: L_1' <: U_1' , \ldots , a_n >: L_n' <: U_n' ] T'$ if, assuming
874
+ $L_1' <: a_1 <: U_1' , \ldots , L_n' <: a_n <: U_n' $
875
+ one has $T <: T'$ and $L_i <: L_i' $ and $U_i' <: U_i$
876
876
for $i \in \{ 1 , \ldots , n \} $.
877
877
- Type constructors $T$ and $T'$ follow a similar discipline. We characterize
878
878
$T$ and $T'$ by their type parameter clauses
0 commit comments