Skip to content

Commit ab155b0

Browse files
committed
Update README.md
1 parent 0e39306 commit ab155b0

File tree

1 file changed

+11
-11
lines changed

1 file changed

+11
-11
lines changed

README.md

Lines changed: 11 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -3,14 +3,14 @@
33
Tutorial Website: http://ufldl.stanford.edu/wiki/index.php/UFLDL_Tutorial
44

55
### Files:
6-
* display_network.py: Visualize feature weights of trained sparse autoencoder
7-
* gradient.py: Check numerical and analytical gradients
8-
* load_MNIST.py: Load MNIST images & labels
9-
* pca_gen.py: PCA & Whitening
10-
* sample_images.py: Sample images from training images
11-
* softmax.py: Softmax logistic regression cost & gradient function
12-
* softmax_exercise.py: Learn & predict digits from MNIST data set with softmax regression
13-
* sparse_autoencoder.py: Sparae autoencoder cost & gradient functions
14-
* stacked_ae_autoencoder.py: Learn & predict digits from MNIST data set using stacked autoencoder
15-
* stl_exercise.py: Self-taught learning
16-
* train.py: Train sparse autoencoder on MNIST data set & visualize feature weights
6+
* [display_network.py](display_network.py): Visualize feature weights of trained sparse autoencoder
7+
* [gradient.py](gradient.py): Check numerical and analytical gradients
8+
* [load_MNIST.py](load_MNIST.py): Load MNIST images & labels
9+
* [pca_gen.py](pca_gen.py): PCA & Whitening
10+
* [sample_images.py](sample_images.py): Sample images from training images
11+
* [softmax.py](softmax.py): Softmax logistic regression cost & gradient function
12+
* [softmax_exercise.py](softmax_exercise.py): Learn & predict digits from MNIST data set with softmax regression
13+
* [sparse_autoencoder.py](sparse_autoencoder.py): Sparae autoencoder cost & gradient functions
14+
* [stacked_ae_autoencoder.py](stacked_ae_autoencoder.py): Learn & predict digits from MNIST data set using stacked autoencoder
15+
* [stl_exercise.py](stl_exercise.py): Self-taught learning
16+
* [train.py](train.py): Train sparse autoencoder on MNIST data set & visualize feature weights

0 commit comments

Comments
 (0)