Skip to content

Commit 546ce11

Browse files
authored
Merge pull request #1455 from cp-algorithms/fibmatrix
Fibonacci: restore matrix power form
2 parents 51d3953 + 59c3174 commit 546ce11

File tree

1 file changed

+14
-1
lines changed

1 file changed

+14
-1
lines changed

src/algebra/fibonacci-numbers.md

Lines changed: 14 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -159,7 +159,20 @@ F_{n}
159159
\end{pmatrix}
160160
$$
161161
162-
where $F_1 = 1, F_0 = 0$.
162+
where $F_1 = 1, F_0 = 0$.
163+
In fact, since
164+
165+
$$
166+
\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}
167+
= \begin{pmatrix} F_2 & F_1 \\ F_1 & F_0 \end{pmatrix}
168+
$$
169+
170+
we can use the matrix directly:
171+
172+
$$
173+
\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^n
174+
= \begin{pmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{pmatrix}
175+
$$
163176
164177
Thus, in order to find $F_n$ in $O(\log n)$ time, we must raise the matrix to n. (See [Binary exponentiation](binary-exp.md))
165178

0 commit comments

Comments
 (0)