|
| 1 | +/** |
| 2 | + * Exponential Search |
| 3 | + * |
| 4 | + * The algorithm consists of two stages. The first stage determines a |
| 5 | + * range in which the search key would reside if it were in the list. |
| 6 | + * In the second stage, a binary search is performed on this range. |
| 7 | + * |
| 8 | + * |
| 9 | + * |
| 10 | + */ |
| 11 | + |
| 12 | +function binarySearch (arr, x, floor, ceiling) { |
| 13 | + // Middle index |
| 14 | + const mid = Math.floor((floor + ceiling) / 2) |
| 15 | + |
| 16 | + // If value is at the mid position return this position |
| 17 | + if (arr[mid] === x) { |
| 18 | + return mid |
| 19 | + } |
| 20 | + |
| 21 | + if (floor > ceiling) return -1 |
| 22 | + |
| 23 | + // If the middle element is great than the value |
| 24 | + // search the left part of the array |
| 25 | + if (arr[mid] > value) { |
| 26 | + return binarySearch(arr, value, floor, mid - 1) |
| 27 | + // If the middle element is lower than the value |
| 28 | + // search the right part of the array |
| 29 | + } else { |
| 30 | + return binarySearch(arr, value, mid + 1, ceiling) |
| 31 | + } |
| 32 | +} |
| 33 | + |
| 34 | +function exponentialSearch (arr, length, value) { |
| 35 | + // If value is the first element of the array return this position |
| 36 | + if (arr[0] === value) { |
| 37 | + return 0 |
| 38 | + } |
| 39 | + |
| 40 | + // Find range for binary search |
| 41 | + let i = 1 |
| 42 | + while (i < length && arr[i] <= value) { |
| 43 | + i = i * 2 |
| 44 | + } |
| 45 | + |
| 46 | + // Call binary search for the range found above |
| 47 | + return binarySearch(arr, value, i / 2, Math.min(i, length)) |
| 48 | +} |
| 49 | + |
| 50 | +const arr = [2, 3, 4, 10, 40, 65, 78, 100] |
| 51 | +const value = 78 |
| 52 | +const result = exponentialSearch(arr, arr.length, value) |
| 53 | + |
| 54 | +if (result < 0) { |
| 55 | + console.log('Element not found') |
| 56 | +} else { |
| 57 | + console.log('Element found at position :' + result) |
| 58 | +} |
0 commit comments