@@ -36,25 +36,25 @@ def _cfg(url='', **kwargs):
36
36
37
37
38
38
default_cfgs = {
39
- 'senet154 ' :
39
+ 'legacy_senet154 ' :
40
40
_cfg (url = 'http://data.lip6.fr/cadene/pretrainedmodels/senet154-c7b49a05.pth' ),
41
- 'seresnet18 ' : _cfg (
41
+ 'legacy_seresnet18 ' : _cfg (
42
42
url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnet18-4bb0ce65.pth' ,
43
43
interpolation = 'bicubic' ),
44
- 'seresnet34 ' : _cfg (
44
+ 'legacy_seresnet34 ' : _cfg (
45
45
url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnet34-a4004e63.pth' ),
46
- 'seresnet50 ' : _cfg (
46
+ 'legacy_seresnet50 ' : _cfg (
47
47
url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-cadene/se_resnet50-ce0d4300.pth' ),
48
- 'seresnet101 ' : _cfg (
48
+ 'legacy_seresnet101 ' : _cfg (
49
49
url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-cadene/se_resnet101-7e38fcc6.pth' ),
50
- 'seresnet152 ' : _cfg (
50
+ 'legacy_seresnet152 ' : _cfg (
51
51
url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-cadene/se_resnet152-d17c99b7.pth' ),
52
- 'seresnext26_32x4d ' : _cfg (
52
+ 'legacy_seresnext26_32x4d ' : _cfg (
53
53
url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnext26_32x4d-65ebdb501.pth' ,
54
54
interpolation = 'bicubic' ),
55
- 'seresnext50_32x4d ' :
55
+ 'legacy_seresnext50_32x4d ' :
56
56
_cfg (url = 'http://data.lip6.fr/cadene/pretrainedmodels/se_resnext50_32x4d-a260b3a4.pth' ),
57
- 'seresnext101_32x4d ' :
57
+ 'legacy_seresnext101_32x4d ' :
58
58
_cfg (url = 'http://data.lip6.fr/cadene/pretrainedmodels/se_resnext101_32x4d-3b2fe3d8.pth' ),
59
59
}
60
60
@@ -408,61 +408,61 @@ def _create_senet(variant, pretrained=False, **kwargs):
408
408
def legacy_seresnet18 (pretrained = False , ** kwargs ):
409
409
model_args = dict (
410
410
block = SEResNetBlock , layers = [2 , 2 , 2 , 2 ], groups = 1 , reduction = 16 , ** kwargs )
411
- return _create_senet ('seresnet18 ' , pretrained , ** model_args )
411
+ return _create_senet ('legacy_seresnet18 ' , pretrained , ** model_args )
412
412
413
413
414
414
@register_model
415
415
def legacy_seresnet34 (pretrained = False , ** kwargs ):
416
416
model_args = dict (
417
417
block = SEResNetBlock , layers = [3 , 4 , 6 , 3 ], groups = 1 , reduction = 16 , ** kwargs )
418
- return _create_senet ('seresnet34 ' , pretrained , ** model_args )
418
+ return _create_senet ('legacy_seresnet34 ' , pretrained , ** model_args )
419
419
420
420
421
421
@register_model
422
422
def legacy_seresnet50 (pretrained = False , ** kwargs ):
423
423
model_args = dict (
424
424
block = SEResNetBottleneck , layers = [3 , 4 , 6 , 3 ], groups = 1 , reduction = 16 , ** kwargs )
425
- return _create_senet ('seresnet50 ' , pretrained , ** model_args )
425
+ return _create_senet ('legacy_seresnet50 ' , pretrained , ** model_args )
426
426
427
427
428
428
@register_model
429
429
def legacy_seresnet101 (pretrained = False , ** kwargs ):
430
430
model_args = dict (
431
431
block = SEResNetBottleneck , layers = [3 , 4 , 23 , 3 ], groups = 1 , reduction = 16 , ** kwargs )
432
- return _create_senet ('seresnet101 ' , pretrained , ** model_args )
432
+ return _create_senet ('legacy_seresnet101 ' , pretrained , ** model_args )
433
433
434
434
435
435
@register_model
436
436
def legacy_seresnet152 (pretrained = False , ** kwargs ):
437
437
model_args = dict (
438
438
block = SEResNetBottleneck , layers = [3 , 8 , 36 , 3 ], groups = 1 , reduction = 16 , ** kwargs )
439
- return _create_senet ('seresnet152 ' , pretrained , ** model_args )
439
+ return _create_senet ('legacy_seresnet152 ' , pretrained , ** model_args )
440
440
441
441
442
442
@register_model
443
443
def legacy_senet154 (pretrained = False , ** kwargs ):
444
444
model_args = dict (
445
445
block = SEBottleneck , layers = [3 , 8 , 36 , 3 ], groups = 64 , reduction = 16 ,
446
446
downsample_kernel_size = 3 , downsample_padding = 1 , inplanes = 128 , input_3x3 = True , ** kwargs )
447
- return _create_senet ('senet154 ' , pretrained , ** model_args )
447
+ return _create_senet ('legacy_senet154 ' , pretrained , ** model_args )
448
448
449
449
450
450
@register_model
451
451
def legacy_seresnext26_32x4d (pretrained = False , ** kwargs ):
452
452
model_args = dict (
453
453
block = SEResNeXtBottleneck , layers = [2 , 2 , 2 , 2 ], groups = 32 , reduction = 16 , ** kwargs )
454
- return _create_senet ('seresnext26_32x4d ' , pretrained , ** model_args )
454
+ return _create_senet ('legacy_seresnext26_32x4d ' , pretrained , ** model_args )
455
455
456
456
457
457
@register_model
458
458
def legacy_seresnext50_32x4d (pretrained = False , ** kwargs ):
459
459
model_args = dict (
460
460
block = SEResNeXtBottleneck , layers = [3 , 4 , 6 , 3 ], groups = 32 , reduction = 16 , ** kwargs )
461
- return _create_senet ('seresnext50_32x4d ' , pretrained , ** model_args )
461
+ return _create_senet ('legacy_seresnext50_32x4d ' , pretrained , ** model_args )
462
462
463
463
464
464
@register_model
465
465
def legacy_seresnext101_32x4d (pretrained = False , ** kwargs ):
466
466
model_args = dict (
467
467
block = SEResNeXtBottleneck , layers = [3 , 4 , 23 , 3 ], groups = 32 , reduction = 16 , ** kwargs )
468
- return _create_senet ('seresnext101_32x4d ' , pretrained , ** model_args )
468
+ return _create_senet ('legacy_seresnext101_32x4d ' , pretrained , ** model_args )
0 commit comments