@@ -28,7 +28,58 @@ static __device__ __forceinline__ int get_int_b4(const void * x, const int & i32
28
28
return ((const int *) x)[i32 ]; // assume at least 4 byte alignment
29
29
}
30
30
31
+ // q4 contains 8 indices with 4 bit each.
32
+ // This function selects those bytes from table that are at those indices and returns them as int2.
33
+ // The first int contains the bytes with even indices in q4, the second int contains the bytes with odd indices in q4.
31
34
static __device__ __forceinline__ int2 get_int_from_table_16 (const int & q4, const int8_t * table) {
35
+ #if defined(GGML_USE_HIP)
36
+ // Load the 16-byte table into four 32-bit unsigned integers.
37
+ const uint32_t *values = (const uint32_t *)table;
38
+
39
+ const uint32_t q_even = q4;
40
+ const uint32_t q_odd = (q4 >> 4 );
41
+
42
+ // Perform lookups in the lower half of the table (indices 0-7).
43
+ uint32_t v_even_low = __builtin_amdgcn_perm (values[1 ], values[0 ], q_even & 0x07070707 );
44
+ uint32_t v_odd_low = __builtin_amdgcn_perm (values[1 ], values[0 ], q_odd & 0x07070707 );
45
+
46
+ // Perform lookups in the upper half of the table (indices 8-15).
47
+ uint32_t v_even_high = __builtin_amdgcn_perm (values[3 ], values[2 ], q_even & 0x07070707 );
48
+ uint32_t v_odd_high = __builtin_amdgcn_perm (values[3 ], values[2 ], q_odd & 0x07070707 );
49
+
50
+ // Select between the low and high results based on the MSB of each index nibble.
51
+ uint32_t mask_even = 0x03020100 | ((q_even & 0x08080808 ) >> 1 );
52
+ uint32_t res_x = __builtin_amdgcn_perm (v_even_high, v_even_low, mask_even);
53
+ uint32_t mask_odd = 0x03020100 | ((q_odd & 0x08080808 ) >> 1 );
54
+ uint32_t res_y = __builtin_amdgcn_perm (v_odd_high, v_odd_low, mask_odd);
55
+
56
+ return make_int2 (res_x, res_y);
57
+ #elif !defined(GGML_USE_MUSA)
58
+ // CUDA does not have an instruction for selecting bytes with 4 bit indices.
59
+ // However, __byte_perm is an instruction that selects bytes with 3 bit indices that can be used instead.
60
+ const uint32_t * table32 = (const uint32_t *) table;
61
+
62
+ // __byte_perm selects bytes based on the lower 16 bits in its third argument.
63
+ // Therefore, do 2 iterations over the 32 bits in q4 with 0 and 16 shift.
64
+ // To handle the fourth bit, first call _byte_perm both for the low and the high 64 bit of table, using the low 3 bits.
65
+ // Then, call __byte_perm again to select from the low and high bytes based on the fourth bit.
66
+ uint32_t tmp[2 ];
67
+ const uint32_t low_high_selection_indices = (0x32103210 | ((q4 & 0x88888888 ) >> 1 ));
68
+ #pragma unroll
69
+ for (uint32_t i = 0 ; i < 2 ; ++i) {
70
+ const uint32_t shift = 16 * i;
71
+
72
+ const uint32_t low = __byte_perm (table32[0 ], table32[1 ], q4 >> shift);
73
+ const uint32_t high = __byte_perm (table32[2 ], table32[3 ], q4 >> shift);
74
+ tmp[i] = __byte_perm (low, high, low_high_selection_indices >> shift);
75
+ }
76
+
77
+ // tmp contains the bytes from tyble in the same order as the 4 bit indices in q4.
78
+ // However, for the result we need ints with all even/odd 4 bit indices in q4.
79
+ // Therefore, 2 more calls to __byte_perm to put the bytes in the correct order.
80
+ return make_int2 (__byte_perm (tmp[0 ], tmp[1 ], 0x6420 ), __byte_perm (tmp[0 ], tmp[1 ], 0x7531 ));
81
+ #else
82
+ // Generic implementation.
32
83
const int q0_32 = (q4 >> 0 ) & 0x0F0F0F0F ;
33
84
const int8_t * q0_8 = (const int8_t *) &q0_32;
34
85
const char4 val0_8 = make_char4 (
@@ -40,6 +91,7 @@ static __device__ __forceinline__ int2 get_int_from_table_16(const int & q4, con
40
91
table[q1_8[0 ]], table[q1_8[1 ]], table[q1_8[2 ]], table[q1_8[3 ]]);
41
92
42
93
return make_int2 (*((const int *) &val0_8), *((const int *) &val1_8));
94
+ #endif
43
95
}
44
96
45
97
// VDR = vec dot ratio, how many contiguous integers each thread processes when the vec dot kernel is called
0 commit comments