|
| 1 | +/* |
| 2 | + Source: |
| 3 | + https://en.wikipedia.org/wiki/Exponentiation_by_squaring |
| 4 | +
|
| 5 | + Complexity: |
| 6 | + O(d^3 log n) |
| 7 | + where: d is the dimension of the square matrix |
| 8 | + n is the power the matrix is raised to |
| 9 | +*/ |
| 10 | + |
| 11 | +const Identity = (n) => { |
| 12 | + // Input: n: int |
| 13 | + // Output: res: Identity matrix of size n x n |
| 14 | + // Complexity: O(n^2) |
| 15 | + const res = [] |
| 16 | + for (let i = 0; i < n; i++) { |
| 17 | + res[i] = [] |
| 18 | + for (let j = 0; j < n; j++) { |
| 19 | + res[i][j] = i === j ? 1 : 0 |
| 20 | + } |
| 21 | + } |
| 22 | + return res |
| 23 | +} |
| 24 | + |
| 25 | +const MatMult = (matA, matB) => { |
| 26 | + // Input: matA: 2D Array of Numbers of size n x n |
| 27 | + // matB: 2D Array of Numbers of size n x n |
| 28 | + // Output: matA x matB: 2D Array of Numbers of size n x n |
| 29 | + // Complexity: O(n^3) |
| 30 | + const n = matA.length |
| 31 | + const matC = [] |
| 32 | + for (let i = 0; i < n; i++) { |
| 33 | + matC[i] = [] |
| 34 | + for (let j = 0; j < n; j++) { |
| 35 | + matC[i][j] = 0 |
| 36 | + } |
| 37 | + } |
| 38 | + for (let i = 0; i < n; i++) { |
| 39 | + for (let j = 0; j < n; j++) { |
| 40 | + for (let k = 0; k < n; k++) { |
| 41 | + matC[i][j] += matA[i][k] * matB[k][j] |
| 42 | + } |
| 43 | + } |
| 44 | + } |
| 45 | + return matC |
| 46 | +} |
| 47 | + |
| 48 | +const MatrixExponentiationRecursive = (mat, m) => { |
| 49 | + // Input: mat: 2D Array of Numbers of size n x n |
| 50 | + // Output: mat^n: 2D Array of Numbers of size n x n |
| 51 | + // Complexity: O(n^3 log m) |
| 52 | + if (m === 0) { |
| 53 | + // return identity matrix of size n x n |
| 54 | + return Identity(mat.length) |
| 55 | + } else if (m % 2 === 1) { |
| 56 | + // tmp = mat ^ m-1 |
| 57 | + const tmp = MatrixExponentiationRecursive(mat, m - 1) |
| 58 | + /// return tmp * mat = (mat ^ m-1) * mat = mat ^ m |
| 59 | + return MatMult(tmp, mat) |
| 60 | + } else { |
| 61 | + // tmp = mat ^ m/2 |
| 62 | + const tmp = MatrixExponentiationRecursive(mat, m >> 1) |
| 63 | + // return tmp * tmp = (mat ^ m/2) ^ 2 = mat ^ m |
| 64 | + return MatMult(tmp, tmp) |
| 65 | + } |
| 66 | +} |
| 67 | + |
| 68 | +const main = () => { |
| 69 | + const mat = [[1, 0, 2], [2, 1, 0], [0, 2, 1]] |
| 70 | + |
| 71 | + // mat ^ 0 = [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ] |
| 72 | + console.log(MatrixExponentiationRecursive(mat, 0)) |
| 73 | + |
| 74 | + // mat ^ 1 = [ [ 1, 0, 2 ], [ 2, 1, 0 ], [ 0, 2, 1 ] ] |
| 75 | + console.log(MatrixExponentiationRecursive(mat, 1)) |
| 76 | + |
| 77 | + // mat ^ 2 = [ [ 1, 4, 4 ], [ 4, 1, 4 ], [ 4, 4, 1 ] ] |
| 78 | + console.log(MatrixExponentiationRecursive(mat, 2)) |
| 79 | + |
| 80 | + // mat ^ 5 = [ [ 1, 4, 4 ], [ 4, 1, 4 ], [ 4, 4, 1 ] ] |
| 81 | + console.log(MatrixExponentiationRecursive(mat, 5)) |
| 82 | +} |
| 83 | + |
| 84 | +main() |
0 commit comments