|
| 1 | +package DataMining_PageRank; |
| 2 | + |
| 3 | +import java.io.BufferedReader; |
| 4 | +import java.io.File; |
| 5 | +import java.io.FileReader; |
| 6 | +import java.io.IOException; |
| 7 | +import java.lang.reflect.Array; |
| 8 | +import java.text.MessageFormat; |
| 9 | +import java.util.ArrayList; |
| 10 | + |
| 11 | +/** |
| 12 | + * PageRank网页排名算法工具类 |
| 13 | + * |
| 14 | + * @author lyq |
| 15 | + * |
| 16 | + */ |
| 17 | +public class PageRankTool { |
| 18 | + // 测试输入数据 |
| 19 | + private String filePath; |
| 20 | + // 网页总数量 |
| 21 | + private int pageNum; |
| 22 | + // 链接关系矩阵 |
| 23 | + private double[][] linkMatrix; |
| 24 | + // 每个页面pageRank值初始向量 |
| 25 | + private double[] pageRankVecor; |
| 26 | + |
| 27 | + // 网页数量分类 |
| 28 | + ArrayList<String> pageClass; |
| 29 | + |
| 30 | + public PageRankTool(String filePath) { |
| 31 | + this.filePath = filePath; |
| 32 | + readDataFile(); |
| 33 | + } |
| 34 | + |
| 35 | + /** |
| 36 | + * 从文件中读取数据 |
| 37 | + */ |
| 38 | + private void readDataFile() { |
| 39 | + File file = new File(filePath); |
| 40 | + ArrayList<String[]> dataArray = new ArrayList<String[]>(); |
| 41 | + |
| 42 | + try { |
| 43 | + BufferedReader in = new BufferedReader(new FileReader(file)); |
| 44 | + String str; |
| 45 | + String[] tempArray; |
| 46 | + while ((str = in.readLine()) != null) { |
| 47 | + tempArray = str.split(" "); |
| 48 | + dataArray.add(tempArray); |
| 49 | + } |
| 50 | + in.close(); |
| 51 | + } catch (IOException e) { |
| 52 | + e.getStackTrace(); |
| 53 | + } |
| 54 | + |
| 55 | + pageClass = new ArrayList<>(); |
| 56 | + // 统计网页类型种数 |
| 57 | + for (String[] array : dataArray) { |
| 58 | + for (String s : array) { |
| 59 | + if (!pageClass.contains(s)) { |
| 60 | + pageClass.add(s); |
| 61 | + } |
| 62 | + } |
| 63 | + } |
| 64 | + |
| 65 | + int i = 0; |
| 66 | + int j = 0; |
| 67 | + pageNum = pageClass.size(); |
| 68 | + linkMatrix = new double[pageNum][pageNum]; |
| 69 | + pageRankVecor = new double[pageNum]; |
| 70 | + for (int k = 0; k < pageNum; k++) { |
| 71 | + // 初始每个页面的pageRank值为1 |
| 72 | + pageRankVecor[k] = 1.0; |
| 73 | + } |
| 74 | + for (String[] array : dataArray) { |
| 75 | + |
| 76 | + i = Integer.parseInt(array[0]); |
| 77 | + j = Integer.parseInt(array[1]); |
| 78 | + |
| 79 | + // 设置linkMatrix[i][j]为1代表i网页包含指向j网页的链接 |
| 80 | + linkMatrix[i - 1][j - 1] = 1; |
| 81 | + } |
| 82 | + } |
| 83 | + |
| 84 | + /** |
| 85 | + * 将矩阵转置 |
| 86 | + */ |
| 87 | + private void transferMatrix() { |
| 88 | + int count = 0; |
| 89 | + for (double[] array : linkMatrix) { |
| 90 | + // 计算页面链接个数 |
| 91 | + count = 0; |
| 92 | + for (double d : array) { |
| 93 | + if (d == 1) { |
| 94 | + count++; |
| 95 | + } |
| 96 | + } |
| 97 | + // 按概率均分 |
| 98 | + for (int i = 0; i < array.length; i++) { |
| 99 | + if (array[i] == 1) { |
| 100 | + array[i] /= count; |
| 101 | + } |
| 102 | + } |
| 103 | + } |
| 104 | + |
| 105 | + double t = 0; |
| 106 | + // 将矩阵转置换,作为概率转移矩阵 |
| 107 | + for (int i = 0; i < linkMatrix.length; i++) { |
| 108 | + for (int j = i + 1; j < linkMatrix[0].length; j++) { |
| 109 | + t = linkMatrix[i][j]; |
| 110 | + linkMatrix[i][j] = linkMatrix[j][i]; |
| 111 | + linkMatrix[j][i] = t; |
| 112 | + } |
| 113 | + } |
| 114 | + } |
| 115 | + |
| 116 | + /** |
| 117 | + * 利用幂法计算pageRank值 |
| 118 | + */ |
| 119 | + public void printPageRankValue() { |
| 120 | + transferMatrix(); |
| 121 | + // 阻尼系数 |
| 122 | + double damp = 0.5; |
| 123 | + // 链接概率矩阵 |
| 124 | + double[][] A = new double[pageNum][pageNum]; |
| 125 | + double[][] e = new double[pageNum][pageNum]; |
| 126 | + |
| 127 | + // 调用公式A=d*q+(1-d)*e/m,m为网页总个数,d就是damp |
| 128 | + double temp = (1 - damp) / pageNum; |
| 129 | + for (int i = 0; i < e.length; i++) { |
| 130 | + for (int j = 0; j < e[0].length; j++) { |
| 131 | + e[i][j] = temp; |
| 132 | + } |
| 133 | + } |
| 134 | + |
| 135 | + for (int i = 0; i < pageNum; i++) { |
| 136 | + for (int j = 0; j < pageNum; j++) { |
| 137 | + temp = damp * linkMatrix[i][j] + e[i][j]; |
| 138 | + A[i][j] = temp; |
| 139 | + |
| 140 | + } |
| 141 | + } |
| 142 | + |
| 143 | + // 误差值,作为判断收敛标准 |
| 144 | + double errorValue = Integer.MAX_VALUE; |
| 145 | + double[] newPRVector = new double[pageNum]; |
| 146 | + // 当平均每个PR值误差小于0.001时就算达到收敛 |
| 147 | + while (errorValue > 0.001 * pageNum) { |
| 148 | + System.out.println("**********"); |
| 149 | + for (int i = 0; i < pageNum; i++) { |
| 150 | + temp = 0; |
| 151 | + // 将A*pageRankVector,利用幂法求解,直到pageRankVector值收敛 |
| 152 | + for (int j = 0; j < pageNum; j++) { |
| 153 | + // temp就是每个网页到i页面的pageRank值 |
| 154 | + temp += A[i][j] * pageRankVecor[j]; |
| 155 | + } |
| 156 | + |
| 157 | + // 最后的temp就是i网页的总PageRank值 |
| 158 | + newPRVector[i] = temp; |
| 159 | + System.out.println(temp); |
| 160 | + } |
| 161 | + |
| 162 | + errorValue = 0; |
| 163 | + for (int i = 0; i < pageNum; i++) { |
| 164 | + errorValue += Math.abs(pageRankVecor[i] - newPRVector[i]); |
| 165 | + // 新的向量代替旧的向量 |
| 166 | + pageRankVecor[i] = newPRVector[i]; |
| 167 | + } |
| 168 | + } |
| 169 | + |
| 170 | + String name = null; |
| 171 | + temp = 0; |
| 172 | + System.out.println("--------------------"); |
| 173 | + for (int i = 0; i < pageNum; i++) { |
| 174 | + System.out.println(MessageFormat.format("网页{0}的pageRank值:{1}", |
| 175 | + pageClass.get(i), pageRankVecor[i])); |
| 176 | + if (pageRankVecor[i] > temp) { |
| 177 | + temp = pageRankVecor[i]; |
| 178 | + name = pageClass.get(i); |
| 179 | + } |
| 180 | + } |
| 181 | + System.out.println(MessageFormat.format("等级最高的网页为:{0}", name)); |
| 182 | + } |
| 183 | + |
| 184 | +} |
0 commit comments