@@ -25,7 +25,7 @@ class VGG(nn.Module):
25
25
def __init__ (self , features , num_classes = 1000 ):
26
26
super (VGG , self ).__init__ ()
27
27
self .features = features
28
- self .classifier = nn .Linear (512 , 10 )
28
+ self .classifier = nn .Linear (512 , num_classes )
29
29
self ._initialize_weights ()
30
30
31
31
def forward (self , x ):
@@ -74,69 +74,65 @@ def make_layers(cfg, batch_norm=False):
74
74
}
75
75
76
76
77
- def vgg11 (pretrained = False , ** kwargs ):
77
+ def vgg11 (** kwargs ):
78
78
"""VGG 11-layer model (configuration "A")
79
79
80
80
Args:
81
81
pretrained (bool): If True, returns a model pre-trained on ImageNet
82
82
"""
83
83
model = VGG (make_layers (cfg ['A' ]), ** kwargs )
84
- if pretrained :
85
- model .load_state_dict (model_zoo .load_url (model_urls ['vgg11' ]))
86
84
return model
87
85
88
86
89
87
def vgg11_bn (** kwargs ):
90
88
"""VGG 11-layer model (configuration "A") with batch normalization"""
91
- return VGG (make_layers (cfg ['A' ], batch_norm = True ), ** kwargs )
89
+ model = VGG (make_layers (cfg ['A' ], batch_norm = True ), ** kwargs )
90
+ return model
92
91
93
92
94
- def vgg13 (pretrained = False , ** kwargs ):
93
+ def vgg13 (** kwargs ):
95
94
"""VGG 13-layer model (configuration "B")
96
95
97
96
Args:
98
97
pretrained (bool): If True, returns a model pre-trained on ImageNet
99
98
"""
100
99
model = VGG (make_layers (cfg ['B' ]), ** kwargs )
101
- if pretrained :
102
- model .load_state_dict (model_zoo .load_url (model_urls ['vgg13' ]))
103
100
return model
104
101
105
102
106
103
def vgg13_bn (** kwargs ):
107
104
"""VGG 13-layer model (configuration "B") with batch normalization"""
108
- return VGG (make_layers (cfg ['B' ], batch_norm = True ), ** kwargs )
105
+ model = VGG (make_layers (cfg ['B' ], batch_norm = True ), ** kwargs )
106
+ return model
109
107
110
108
111
- def vgg16 (pretrained = False , ** kwargs ):
109
+ def vgg16 (** kwargs ):
112
110
"""VGG 16-layer model (configuration "D")
113
111
114
112
Args:
115
113
pretrained (bool): If True, returns a model pre-trained on ImageNet
116
114
"""
117
115
model = VGG (make_layers (cfg ['D' ]), ** kwargs )
118
- if pretrained :
119
- model .load_state_dict (model_zoo .load_url (model_urls ['vgg16' ]))
120
116
return model
121
117
122
118
123
119
def vgg16_bn (** kwargs ):
124
120
"""VGG 16-layer model (configuration "D") with batch normalization"""
125
- return VGG (make_layers (cfg ['D' ], batch_norm = True ), ** kwargs )
121
+ model = VGG (make_layers (cfg ['D' ], batch_norm = True ), ** kwargs )
122
+ return model
126
123
127
124
128
- def vgg19 (pretrained = False , ** kwargs ):
125
+ def vgg19 (** kwargs ):
129
126
"""VGG 19-layer model (configuration "E")
130
127
131
128
Args:
132
129
pretrained (bool): If True, returns a model pre-trained on ImageNet
133
130
"""
134
131
model = VGG (make_layers (cfg ['E' ]), ** kwargs )
135
- if pretrained :
136
- model .load_state_dict (model_zoo .load_url (model_urls ['vgg19' ]))
137
132
return model
138
133
139
134
140
135
def vgg19_bn (** kwargs ):
141
136
"""VGG 19-layer model (configuration 'E') with batch normalization"""
142
- return VGG (make_layers (cfg ['E' ], batch_norm = True ), ** kwargs )
137
+ model = VGG (make_layers (cfg ['E' ], batch_norm = True ), ** kwargs )
138
+ return model
0 commit comments