@@ -10,17 +10,26 @@ Classification on CIFAR10/100 with PyTorch.
10
10
11
11
## Results
12
12
13
+ ### CIFAR
13
14
Top1 error rate on CIFAR10/100 are reported. You may get different results when training your models with different initialization.
14
15
15
16
| Model | Params (M, CIFAR10)| CIFAR-10 (%) | CIFAR-100 (%) |
16
17
| ------------------- | ------------------ | ------------------ | ------------------ |
17
18
| alexnet | 2.47 | 22.78 | 56.13 |
18
19
| vgg19_bn | 20.04 | 6.66 | 28.05 |
19
- | Resnet-110 | 1.70 | local | local |
20
- | Resnet-1202 | 18.58 | 186 | 186 |
21
- | ResNeXt-29, 8x64 | 34.43 | 3.62 | |
22
- | ResNeXt-29, 16x64 | 68.16 | 164 | 10137 |
23
- | WRN-28-10 (drop 0.3) | 36.48 | 179 | 10137 |
20
+ | Resnet-110 | 1.70 | 6.11 | 28.86 |
21
+ | WRN-28-10 (drop 0.3) | 36.48 | 3.79 | 18.14 |
22
+ | ResNeXt-29, 8x64 | 34.43 | 3.69 | 17.38 |
23
+ | ResNeXt-29, 16x64 | 68.16 | 3.53 | 10137 |
24
+
25
+ ### ImageNet
26
+ Single-crop (224x224) validation error rate
27
+
28
+
29
+ | Model | Params (M) | Top-1 Error (%) | Top-5 Error (%) |
30
+ | ------------------- | ------------------ | ------------------ | ------------------ |
31
+ | Resnet-101 | 44.55 | | |
32
+
24
33
25
34
## Supported Architectures
26
35
@@ -33,8 +42,10 @@ Since the size of images in CIFAR dataset is `32x32`, popular network structures
33
42
- [x] [ Wide Residual Networks] ( http://arxiv.org/abs/1605.07146 ) (Imported from [ WideResNet-pytorch] ( https://github.com/xternalz/WideResNet-pytorch ) )
34
43
- [ ] [ DenseNet] ( https://arxiv.org/abs/1608.06993 )
35
44
36
- ## Training recipes
37
- Please see the [ Training recipes] ( TRAINING.md ) for how to train the models.
45
+ ### ImageNet
46
+ - [x] All models in ` torchvision.models ` (alexnet, vgg, resnet, densenet, inception_v3, squeezenet)
47
+ - [ ] [ ResNeXt] ( https://arxiv.org/abs/1611.05431 )
48
+ - [ ] [ Wide Residual Networks] ( http://arxiv.org/abs/1605.07146 )
38
49
39
- ## TODO
40
- - [ ] Add ImageNet
50
+ ## Training recipes
51
+ Please see the [ Training recipes ] ( TRAINING.md ) for how to train the models.
0 commit comments