@@ -17,18 +17,19 @@ Top1 error rate on CIFAR10/100 are reported. You may get different results when
17
17
| ------------------- | ------------------ | ------------------ | ------------------ |
18
18
| alexnet | 2.47 | 22.78 | 56.13 |
19
19
| vgg19_bn | 20.04 | 6.66 | 28.05 |
20
- | Resnet-110 | 1.70 | 6.11 | 28.86 |
20
+ | ResNet-110 | 1.70 | 6.11 | 28.86 |
21
+ | PreResNet-110 | 1.70 | 4.94 | 23.65 |
21
22
| WRN-28-10 (drop 0.3) | 36.48 | 3.79 | 18.14 |
22
23
| ResNeXt-29, 8x64 | 34.43 | 3.69 | 17.38 |
23
- | ResNeXt-29, 16x64 | 68.16 | 3.53 | 10137 |
24
+ | ResNeXt-29, 16x64 | 68.16 | 3.53 | 17.30 |
24
25
25
26
### ImageNet
26
27
Single-crop (224x224) validation error rate
27
28
28
29
29
30
| Model | Params (M) | Top-1 Error (%) | Top-5 Error (%) |
30
31
| ------------------- | ------------------ | ------------------ | ------------------ |
31
- | Resnet -18 | 11.69 | | |
32
+ | ResNet -18 | 11.69 | 35.32 | 13.59 |
32
33
33
34
34
35
## Supported Architectures
@@ -38,14 +39,14 @@ Since the size of images in CIFAR dataset is `32x32`, popular network structures
38
39
- [x] [ AlexNet] ( https://arxiv.org/abs/1404.5997 )
39
40
- [x] [ VGG] ( https://arxiv.org/abs/1409.1556 ) (Imported from [ pytorch-cifar] ( https://github.com/kuangliu/pytorch-cifar ) )
40
41
- [x] [ ResNet] ( https://arxiv.org/abs/1512.03385 )
41
- - [ ] [ Pre-act-ResNet] ( https://arxiv.org/abs/1603.05027 )
42
+ - [x ] [ Pre-act-ResNet] ( https://arxiv.org/abs/1603.05027 )
42
43
- [x] [ ResNeXt] ( https://arxiv.org/abs/1611.05431 ) (Imported from [ ResNeXt.pytorch] ( https://github.com/prlz77/ResNeXt.pytorch ) )
43
44
- [x] [ Wide Residual Networks] ( http://arxiv.org/abs/1605.07146 ) (Imported from [ WideResNet-pytorch] ( https://github.com/xternalz/WideResNet-pytorch ) )
44
45
- [ ] [ DenseNet] ( https://arxiv.org/abs/1608.06993 )
45
46
46
47
### ImageNet
47
- - [x ] All models in ` torchvision.models ` (alexnet, vgg, resnet, densenet, inception_v3, squeezenet)
48
- - [ ] [ ResNeXt] ( https://arxiv.org/abs/1611.05431 )
48
+ - [ ] All models in ` torchvision.models ` (alexnet, vgg, resnet, densenet, inception_v3, squeezenet)
49
+ - [ ] [ ResNeXt] ( https://arxiv.org/abs/1611.05431 )
49
50
- [ ] [ Wide Residual Networks] ( http://arxiv.org/abs/1605.07146 )
50
51
51
52
## Training recipes
0 commit comments