|
| 1 | +#include <iostream> |
| 2 | +#include <math.h> |
| 3 | +using namespace std; |
| 4 | + |
| 5 | + |
| 6 | +double uniform(double min, double max) { |
| 7 | + return rand() / (RAND_MAX + 1.0) * (max - min) + min; |
| 8 | +} |
| 9 | + |
| 10 | +int binomial(int n, double p) { |
| 11 | + if(p < 0 || p > 1) return 0; |
| 12 | + |
| 13 | + int c = 0; |
| 14 | + double r; |
| 15 | + |
| 16 | + for(int i=0; i<n; i++) { |
| 17 | + r = rand() / (RAND_MAX + 1.0); |
| 18 | + if (r < p) c++; |
| 19 | + } |
| 20 | + |
| 21 | + return c; |
| 22 | +} |
| 23 | + |
| 24 | +double sigmoid(double x) { |
| 25 | + return 1.0 / (1.0 + exp(-x)); |
| 26 | +} |
| 27 | + |
| 28 | + |
| 29 | + |
| 30 | +class dA { |
| 31 | + |
| 32 | +public: |
| 33 | + int N; |
| 34 | + int n_visible; |
| 35 | + int n_hidden; |
| 36 | + double **W; |
| 37 | + double *hbias; |
| 38 | + double *vbias; |
| 39 | + dA(int, int, int , double**, double*, double*); |
| 40 | + ~dA(); |
| 41 | + void get_corrupted_input(int*, int*, double); |
| 42 | + void get_hidden_values(int*, double*); |
| 43 | + void get_reconstructed_input(double*, double*); |
| 44 | + void train(int*, double, double); |
| 45 | + void reconstruct(int*, double*); |
| 46 | +}; |
| 47 | + |
| 48 | + |
| 49 | +dA::dA(int size, int n_v, int n_h, double **w, double *hb, double *vb) { |
| 50 | + N = size; |
| 51 | + n_visible = n_v; |
| 52 | + n_hidden = n_h; |
| 53 | + |
| 54 | + if(w == NULL) { |
| 55 | + W = new double*[n_hidden]; |
| 56 | + for(int i=0; i<n_hidden; i++) W[i] = new double[n_visible]; |
| 57 | + double a = 1.0 / n_visible; |
| 58 | + |
| 59 | + for(int i=0; i<n_hidden; i++) { |
| 60 | + for(int j=0; j<n_visible; j++) { |
| 61 | + W[i][j] = uniform(-a, a); |
| 62 | + } |
| 63 | + } |
| 64 | + } else { |
| 65 | + W = w; |
| 66 | + } |
| 67 | + |
| 68 | + if(hb == NULL) { |
| 69 | + hbias = new double[n_hidden]; |
| 70 | + for(int i=0; i<n_hidden; i++) hbias[i] = 0; |
| 71 | + } else { |
| 72 | + hbias = hb; |
| 73 | + } |
| 74 | + |
| 75 | + if(vb == NULL) { |
| 76 | + vbias = new double[n_visible]; |
| 77 | + for(int i=0; i<n_visible; i++) vbias[i] = 0; |
| 78 | + } else { |
| 79 | + vbias = vb; |
| 80 | + } |
| 81 | +} |
| 82 | + |
| 83 | +dA::~dA() { |
| 84 | + for(int i=0; i<n_hidden; i++) delete[] W[i]; |
| 85 | + delete[] W; |
| 86 | + delete[] hbias; |
| 87 | + delete[] vbias; |
| 88 | +} |
| 89 | + |
| 90 | +void dA::get_corrupted_input(int *x, int *tilde_x, double p) { |
| 91 | + for(int i=0; i<n_visible; i++) { |
| 92 | + if(x[i] == 0) { |
| 93 | + tilde_x[i] = 0; |
| 94 | + } else { |
| 95 | + tilde_x[i] = binomial(1, p); |
| 96 | + } |
| 97 | + } |
| 98 | +} |
| 99 | + |
| 100 | +// Encode |
| 101 | +void dA::get_hidden_values(int *x, double *y) { |
| 102 | + for(int i=0; i<n_hidden; i++) { |
| 103 | + y[i] = 0; |
| 104 | + for(int j=0; j<n_visible; j++) { |
| 105 | + y[i] += W[i][j] * x[j]; |
| 106 | + } |
| 107 | + y[i] += hbias[i]; |
| 108 | + y[i] = sigmoid(y[i]); |
| 109 | + } |
| 110 | +} |
| 111 | + |
| 112 | +// Decode |
| 113 | +void dA::get_reconstructed_input(double *y, double *z) { |
| 114 | + for(int i=0; i<n_visible; i++) { |
| 115 | + z[i] = 0; |
| 116 | + for(int j=0; j<n_hidden; j++) { |
| 117 | + z[i] += W[j][i] * y[j]; |
| 118 | + } |
| 119 | + z[i] += vbias[i]; |
| 120 | + z[i] = sigmoid(z[i]); |
| 121 | + } |
| 122 | +} |
| 123 | + |
| 124 | +void dA::train(int *x, double lr, double corruption_level) { |
| 125 | + int *tilde_x = new int[n_visible]; |
| 126 | + double *y = new double[n_hidden]; |
| 127 | + double *z = new double[n_visible]; |
| 128 | + |
| 129 | + double *L_vbias = new double[n_visible]; |
| 130 | + double *L_hbias = new double[n_hidden]; |
| 131 | + |
| 132 | + double p = 1 - corruption_level; |
| 133 | + |
| 134 | + get_corrupted_input(x, tilde_x, p); |
| 135 | + get_hidden_values(tilde_x, y); |
| 136 | + get_reconstructed_input(y, z); |
| 137 | + |
| 138 | + // vbias |
| 139 | + for(int i=0; i<n_visible; i++) { |
| 140 | + L_vbias[i] = x[i] - z[i]; |
| 141 | + vbias[i] += lr * L_vbias[i] / N; |
| 142 | + } |
| 143 | + |
| 144 | + // hbias |
| 145 | + for(int i=0; i<n_hidden; i++) { |
| 146 | + L_hbias[i] = 0; |
| 147 | + for(int j=0; j<n_visible; j++) { |
| 148 | + L_hbias[i] += W[i][j] * L_vbias[j]; |
| 149 | + } |
| 150 | + L_hbias[i] *= y[i] * (1 - y[i]); |
| 151 | + |
| 152 | + hbias[i] += lr * L_hbias[i] / N; |
| 153 | + } |
| 154 | + |
| 155 | + // W |
| 156 | + for(int i=0; i<n_hidden; i++) { |
| 157 | + for(int j=0; j<n_visible; j++) { |
| 158 | + W[i][j] += lr * (L_hbias[i] * tilde_x[j] + L_vbias[j] * y[i]) / N; |
| 159 | + } |
| 160 | + } |
| 161 | + |
| 162 | + delete[] L_hbias; |
| 163 | + delete[] L_vbias; |
| 164 | + delete[] z; |
| 165 | + delete[] y; |
| 166 | + delete[] tilde_x; |
| 167 | +} |
| 168 | + |
| 169 | +void dA::reconstruct(int *x, double *z) { |
| 170 | + double *y = new double[n_hidden]; |
| 171 | + |
| 172 | + // for(int i=0; i<n_visible; i++) z[i] = 0; |
| 173 | + for(int i=0; i<n_hidden; i++) y[i] = 0; |
| 174 | + |
| 175 | + get_hidden_values(x, y); |
| 176 | + get_reconstructed_input(y, z); |
| 177 | + |
| 178 | + delete[] y; |
| 179 | +} |
| 180 | + |
| 181 | + |
| 182 | + |
| 183 | +void test_dA() { |
| 184 | + srand(0); |
| 185 | + |
| 186 | + double learning_rate = 0.1; |
| 187 | + double corruption_level = 0.3; |
| 188 | + int training_epochs = 50; |
| 189 | + |
| 190 | + int train_N = 10; |
| 191 | + int test_N = 2; |
| 192 | + int n_visible = 20; |
| 193 | + int n_hidden = 5; |
| 194 | + |
| 195 | + // training data |
| 196 | + int train_X[10][20] = { |
| 197 | + {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, |
| 198 | + {1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, |
| 199 | + {1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, |
| 200 | + {1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, |
| 201 | + {0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, |
| 202 | + {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, |
| 203 | + {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1}, |
| 204 | + {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1}, |
| 205 | + {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1}, |
| 206 | + {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0} |
| 207 | + }; |
| 208 | + |
| 209 | + // construct dA |
| 210 | + dA da(train_N, n_visible, n_hidden, NULL, NULL, NULL); |
| 211 | + |
| 212 | + // train |
| 213 | + for(int epoch=0; epoch<training_epochs; epoch++) { |
| 214 | + for(int i=0; i<train_N; i++) { |
| 215 | + da.train(train_X[i], learning_rate, corruption_level); |
| 216 | + } |
| 217 | + } |
| 218 | + |
| 219 | + // test data |
| 220 | + int test_X[2][20] = { |
| 221 | + {1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, |
| 222 | + {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0} |
| 223 | + }; |
| 224 | + double reconstructed_X[2][20] = {0}; |
| 225 | + |
| 226 | + |
| 227 | + // test |
| 228 | + for(int i=0; i<test_N; i++) { |
| 229 | + da.reconstruct(test_X[i], reconstructed_X[i]); |
| 230 | + for(int j=0; j<n_visible; j++) { |
| 231 | + printf("%.5f ", reconstructed_X[i][j]); |
| 232 | + } |
| 233 | + cout << endl; |
| 234 | + } |
| 235 | + |
| 236 | + cout << endl; |
| 237 | +} |
| 238 | + |
| 239 | + |
| 240 | + |
| 241 | +int main() { |
| 242 | + test_dA(); |
| 243 | + return 0; |
| 244 | +} |
0 commit comments