@@ -42,13 +42,15 @@ def _cfg(url='', **kwargs):
42
42
interpolation = 'bicubic' ),
43
43
'resnet26d' : _cfg (
44
44
url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet26d-69e92c46.pth' ,
45
- interpolation = 'bicubic' ),
45
+ interpolation = 'bicubic' ,
46
+ first_conv = 'conv1.0' ),
46
47
'resnet50' : _cfg (
47
48
url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet50_ram-a26f946b.pth' ,
48
49
interpolation = 'bicubic' ),
49
50
'resnet50d' : _cfg (
50
51
url = '' ,
51
- interpolation = 'bicubic' ),
52
+ interpolation = 'bicubic' ,
53
+ first_conv = 'conv1.0' ),
52
54
'resnet101' : _cfg (url = 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth' ),
53
55
'resnet152' : _cfg (url = 'https://download.pytorch.org/models/resnet152-b121ed2d.pth' ),
54
56
'tv_resnet34' : _cfg (url = 'https://download.pytorch.org/models/resnet34-333f7ec4.pth' ),
@@ -62,7 +64,8 @@ def _cfg(url='', **kwargs):
62
64
interpolation = 'bicubic' ),
63
65
'resnext50d_32x4d' : _cfg (
64
66
url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnext50d_32x4d-103e99f8.pth' ,
65
- interpolation = 'bicubic' ),
67
+ interpolation = 'bicubic' ,
68
+ first_conv = 'conv1.0' ),
66
69
'resnext101_32x4d' : _cfg (url = '' ),
67
70
'resnext101_32x8d' : _cfg (url = 'https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth' ),
68
71
'resnext101_64x4d' : _cfg (url = '' ),
@@ -118,7 +121,8 @@ def _cfg(url='', **kwargs):
118
121
interpolation = 'bicubic' ),
119
122
'seresnet50tn' : _cfg (
120
123
url = '' ,
121
- interpolation = 'bicubic' ),
124
+ interpolation = 'bicubic' ,
125
+ first_conv = 'conv1.0' ),
122
126
'seresnet101' : _cfg (
123
127
url = '' ,
124
128
interpolation = 'bicubic' ),
@@ -132,13 +136,16 @@ def _cfg(url='', **kwargs):
132
136
interpolation = 'bicubic' ),
133
137
'seresnext26d_32x4d' : _cfg (
134
138
url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnext26d_32x4d-80fa48a3.pth' ,
135
- interpolation = 'bicubic' ),
139
+ interpolation = 'bicubic' ,
140
+ first_conv = 'conv1.0' ),
136
141
'seresnext26t_32x4d' : _cfg (
137
142
url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnext26t_32x4d-361bc1c4.pth' ,
138
- interpolation = 'bicubic' ),
143
+ interpolation = 'bicubic' ,
144
+ first_conv = 'conv1.0' ),
139
145
'seresnext26tn_32x4d' : _cfg (
140
146
url = 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnext26tn_32x4d-569cb627.pth' ,
141
- interpolation = 'bicubic' ),
147
+ interpolation = 'bicubic' ,
148
+ first_conv = 'conv1.0' ),
142
149
'seresnext50_32x4d' : _cfg (
143
150
interpolation = 'bicubic' ),
144
151
'seresnext101_32x4d' : _cfg (
@@ -149,7 +156,8 @@ def _cfg(url='', **kwargs):
149
156
interpolation = 'bicubic' ),
150
157
'senet154' : _cfg (
151
158
url = '' ,
152
- interpolation = 'bicubic' ),
159
+ interpolation = 'bicubic' ,
160
+ first_conv = 'conv1.0' ),
153
161
154
162
# Efficient Channel Attention ResNets
155
163
'ecaresnet18' : _cfg (),
@@ -159,21 +167,26 @@ def _cfg(url='', **kwargs):
159
167
interpolation = 'bicubic' ),
160
168
'ecaresnet50d' : _cfg (
161
169
url = 'https://imvl-automl-sh.oss-cn-shanghai.aliyuncs.com/darts/hyperml/hyperml/job_45402/outputs/ECAResNet50D_833caf58.pth' ,
162
- interpolation = 'bicubic' ),
170
+ interpolation = 'bicubic' ,
171
+ first_conv = 'conv1.0' ),
163
172
'ecaresnet50d_pruned' : _cfg (
164
173
url = 'https://imvl-automl-sh.oss-cn-shanghai.aliyuncs.com/darts/hyperml/hyperml/job_45899/outputs/ECAResNet50D_P_9c67f710.pth' ,
165
- interpolation = 'bicubic' ),
174
+ interpolation = 'bicubic' ,
175
+ first_conv = 'conv1.0' ),
166
176
'ecaresnet101d' : _cfg (
167
177
url = 'https://imvl-automl-sh.oss-cn-shanghai.aliyuncs.com/darts/hyperml/hyperml/job_45402/outputs/ECAResNet101D_281c5844.pth' ,
168
- interpolation = 'bicubic' ),
178
+ interpolation = 'bicubic' ,
179
+ first_conv = 'conv1.0' ),
169
180
'ecaresnet101d_pruned' : _cfg (
170
181
url = 'https://imvl-automl-sh.oss-cn-shanghai.aliyuncs.com/darts/hyperml/hyperml/job_45610/outputs/ECAResNet101D_P_75a3370e.pth' ,
171
- interpolation = 'bicubic' ),
182
+ interpolation = 'bicubic' ,
183
+ first_conv = 'conv1.0' ),
172
184
173
185
# Efficient Channel Attention ResNeXts
174
186
'ecaresnext26tn_32x4d' : _cfg (
175
187
url = '' ,
176
- interpolation = 'bicubic' ),
188
+ interpolation = 'bicubic' ,
189
+ first_conv = 'conv1.0' ),
177
190
'ecaresnext50_32x4d' : _cfg (
178
191
url = '' ,
179
192
interpolation = 'bicubic' ),
0 commit comments