@@ -86,7 +86,7 @@ def speed():
86
86
"""
87
87
88
88
algo = ['logistic_sgd' , 'logistic_cg' , 'mlp' , 'convolutional_mlp' ,
89
- 'dA' , 'SdA' , 'DBN' , 'rbm' , 'rnnrbm' ]
89
+ 'dA' , 'SdA' , 'DBN' , 'rbm' , 'rnnrbm' , 'rnnslu' ]
90
90
to_exec = [True ] * len (algo )
91
91
# to_exec = [False] * len(algo)
92
92
# to_exec[-1] = True
@@ -101,9 +101,9 @@ def speed():
101
101
# 7.1-2 (python 2.7.2, mkl unknow). BLAS with only 1 thread.
102
102
103
103
expected_times_64 = numpy .asarray ([9.8 , 22.5 , 76.1 , 73.7 , 116.4 ,
104
- 346.9 , 381.9 , 558.1 , 186.3 ])
104
+ 346.9 , 381.9 , 558.1 , 186.3 , 50.8 ])
105
105
expected_times_32 = numpy .asarray ([8.1 , 17.9 , 42.5 , 66.5 , 71 ,
106
- 191.2 , 226.8 , 432.8 , 176.2 ])
106
+ 191.2 , 226.8 , 432.8 , 176.2 , 36.9 ])
107
107
108
108
# Number with just 1 decimal are new value that are faster with
109
109
# the Theano version 0.5rc2 Other number are older. They are not
@@ -124,8 +124,7 @@ def speed():
124
124
125
125
expected_times_gpu = numpy .asarray ([3.0 , 7.55523491 , 18.99226785 ,
126
126
5.8 , 21.5 ,
127
- 11.8 , 47.9 , 290.1 , 315.4 ])
128
-
127
+ 11.8 , 47.9 , 290.1 , 315.4 , 72.4 ])
129
128
expected_times_64 = [s for idx , s in enumerate (expected_times_64 )
130
129
if to_exec [idx ]]
131
130
expected_times_32 = [s for idx , s in enumerate (expected_times_32 )
@@ -164,6 +163,24 @@ def do_tests():
164
163
time_test (m , l , 7 , rbm .test_rbm , training_epochs = 1 , batch_size = 300 ,
165
164
n_chains = 1 , n_samples = 1 , output_folder = 'tmp_rbm_plots' )
166
165
time_test (m , l , 8 , rnnrbm .test_rnnrbm , num_epochs = 1 )
166
+ s = {'fold' : 3 ,
167
+ # 5 folds 0,1,2,3,4
168
+ 'data' : 'atis' ,
169
+ 'lr' : 0.0970806646812754 ,
170
+ 'verbose' : 1 ,
171
+ 'decay' : True ,
172
+ # decay on the learning rate if improvement stops
173
+ 'win' : 7 ,
174
+ # number of words in the context window
175
+ 'nhidden' : 200 ,
176
+ # number of hidden units
177
+ 'seed' : 345 ,
178
+ 'emb_dimension' : 50 ,
179
+ # dimension of word embedding
180
+ 'nepochs' : 1 ,
181
+ # 60 is recommended
182
+ 'savemodel' : False }
183
+ time_test (m , l , 9 , rnnslu .main , param = s )
167
184
return numpy .asarray (l )
168
185
169
186
#test in float64 in FAST_RUN mode on the cpu
0 commit comments