NumPy 2.3.0 Release Notes
The NumPy 2.3.0 release continues the work to improve free threaded
Python support and annotations together with the usual set of bug fixes.
It is unusual in the number of expired deprecations, code
modernizations, and style cleanups. The latter may not be visible to
users, but is important for code maintenance over the long term. Note
that we have also upgraded from manylinux2014 to manylinux_2_28.
Users running on a Mac having an M4 cpu might see various warnings about
invalid values and such. The warnings are a known problem with
Accelerate. They are annoying, but otherwise harmless. Apple promises to
fix them.
This release supports Python versions 3.11-3.13, Python 3.14 will be
supported when it is released.
Highlights
- Interactive examples in the NumPy documentation.
- Building NumPy with OpenMP Parallelization.
- Preliminary support for Windows on ARM.
- Improved support for free threaded Python.
- Improved annotations.
New functions
New function numpy.strings.slice
The new function numpy.strings.slice
was added, which implements fast
native slicing of string arrays. It supports the full slicing API
including negative slice offsets and steps.
(gh-27789)
Deprecations
-
The
numpy.typing.mypy_plugin
has been deprecated in favor of
platform-agnostic static type inference. Please remove
numpy.typing.mypy_plugin
from theplugins
section of your mypy
configuration. If this change results in new errors being reported,
kindly open an issue.(gh-28129)
-
The
numpy.typing.NBitBase
type has been deprecated and will be
removed in a future version.This type was previously intended to be used as a generic upper
bound for type-parameters, for example:import numpy as np import numpy.typing as npt def f[NT: npt.NBitBase](x: np.complexfloating[NT]) -> np.floating[NT]: ...
But in NumPy 2.2.0,
float64
andcomplex128
were changed to
concrete subtypes, causing static type-checkers to reject
x: np.float64 = f(np.complex128(42j))
.So instead, the better approach is to use
typing.overload
:import numpy as np from typing import overload @overload def f(x: np.complex64) -> np.float32: ... @overload def f(x: np.complex128) -> np.float64: ... @overload def f(x: np.clongdouble) -> np.longdouble: ...
(gh-28884)
Expired deprecations
-
Remove deprecated macros like
NPY_OWNDATA
from Cython interfaces
in favor ofNPY_ARRAY_OWNDATA
(deprecated since 1.7)(gh-28254)
-
Remove
numpy/npy_1_7_deprecated_api.h
and C macros like
NPY_OWNDATA
in favor ofNPY_ARRAY_OWNDATA
(deprecated since 1.7)(gh-28254)
-
Remove alias
generate_divbyzero_error
to
npy_set_floatstatus_divbyzero
andgenerate_overflow_error
to
npy_set_floatstatus_overflow
(deprecated since 1.10)(gh-28254)
-
Remove
np.tostring
(deprecated since 1.19)(gh-28254)
-
Raise on
np.conjugate
of non-numeric types (deprecated since 1.13)(gh-28254)
-
Raise when using
np.bincount(...minlength=None)
, use 0 instead
(deprecated since 1.14)(gh-28254)
-
Passing
shape=None
to functions with a non-optional shape argument
errors, use()
instead (deprecated since 1.20)(gh-28254)
-
Inexact matches for
mode
andsearchside
raise (deprecated since
1.20)(gh-28254)
-
Setting
__array_finalize__ = None
errors (deprecated since 1.23)(gh-28254)
-
np.fromfile
andnp.fromstring
error on bad data, previously they
would guess (deprecated since 1.18)(gh-28254)
-
datetime64
andtimedelta64
construction with a tuple no longer
accepts anevent
value, either use a two-tuple of (unit, num) or a
4-tuple of (unit, num, den, 1) (deprecated since 1.14)(gh-28254)
-
When constructing a
dtype
from a class with adtype
attribute,
that attribute must be a dtype-instance rather than a thing that can
be parsed as a dtype instance (deprecated in 1.19). At some point
the whole construct of using a dtype attribute will be deprecated
(see #25306)(gh-28254)
-
Passing booleans as partition index errors (deprecated since 1.23)
(gh-28254)
-
Out-of-bounds indexes error even on empty arrays (deprecated since
1.20)(gh-28254)
-
np.tostring
has been removed, usetobytes
instead (deprecated
since 1.19)(gh-28254)
-
Disallow make a non-writeable array writeable for arrays with a base
that do not own their data (deprecated since 1.17)(gh-28254)
-
concatenate()
withaxis=None
usessame-kind
casting by
default, notunsafe
(deprecated since 1.20)(gh-28254)
-
Unpickling a scalar with object dtype errors (deprecated since 1.20)
(gh-28254)
-
The binary mode of
fromstring
now errors, usefrombuffer
instead
(deprecated since 1.14)(gh-28254)
-
Converting
np.inexact
ornp.floating
to a dtype errors
(deprecated since 1.19)(gh-28254)
-
Converting
np.complex
,np.integer
,np.signedinteger
,
np.unsignedinteger
,np.generic
to a dtype errors (deprecated
since 1.19)(gh-28254)
-
The Python built-in
round
errors for complex scalars. Use
np.round
orscalar.round
instead (deprecated since 1.19)(gh-28254)
-
'np.bool' scalars can no longer be interpreted as an index
(deprecated since 1.19)(gh-28254)
-
Parsing an integer via a float string is no longer supported.
(deprecated since 1.23) To avoid this error you can- make sure the original data is stored as integers.
- use the
converters=float
keyword argument. - Use
np.loadtxt(...).astype(np.int64)
(gh-28254)
-
The use of a length 1 tuple for the ufunc
signature
errors. Use
dtype
or fill the tuple withNone
(deprecated since 1.19)(gh-28254)
-
Special handling of matrix is in np.outer is removed. Convert to a
ndarray viamatrix.A
(deprecated since 1.20)(gh-28254)
-
Removed the
np.compat
package source code (removed in 2.0)(gh-28961)
C API changes
-
NpyIter_GetTransferFlags
is now available to check if the iterator
needs the Python API or if casts may cause floating point errors
(FPE). FPEs can for example be set when castingfloat64(1e300)
to
float32
(overflow to infinity) or a NaN to an integer (invalid
value).(gh-27883)
-
NpyIter
now has no limit on the number of operands it supports.(gh-28080)
New NpyIter_GetTransferFlags
and NpyIter_IterationNeedsAPI
change
NumPy now has the new NpyIter_GetTransferFlags
function as a more
precise way checking of iterator/buffering needs. I.e. whether the
Python API/GIL is required or floating point errors may occur. This
function is also faster if you already know your needs without
buffering.
The NpyIter_IterationNeedsAPI
function now performs all the checks
that were previously performed at setup time. While it was never
necessary to call it multiple times, doing so will now have a larger
cost.
(gh-27998)
New Features
-
The type parameter of
np.dtype
now defaults totyping.Any
. This
way, static type-checkers will inferdtype: np.dtype
as
dtype: np.dtype[Any]
, without reporting an error.(gh-28669)
-
Static type-checkers now interpret:
_: np.ndarray
as_: npt.NDArray[typing.Any]
._: np.flatiter
as_: np.flatiter[np.ndarray]
.
This is because their type parameters now have default values.
(gh-28940)
NumPy now registers its pkg-config paths with the pkgconf PyPI package
The pkgconf PyPI
package provides an interface for projects like NumPy to register their
own paths to be added to the pkg-config search path. This means that
when using pkgconf
from PyPI, NumPy will be discoverable without needing for any custom
environment configuration.
Note
This only applies when using the pkgconf package from PyPI,
or put another way, this only applies when installing pkgconf via a
Python package manager.
If you are using pkg-config
or pkgconf
provided by your system,
or any other source that does not use the pkgconf-pypi
project, the NumPy pkg-config directory will not be automatically added
to the search path. In these situations, you might want to use numpy-config
.
(gh-28214)
Allow out=...
in ufuncs to ensure array result
NumPy has the sometimes difficult behavior that it currently usually
returns scalars rather than 0-D arrays (even if the inputs were 0-D
arrays). This is especially problematic for non-numerical dtypes (e.g.
object
).
For ufuncs (i.e. most simple math functions) it is now possible to use
out=...
(literally `...`, e.g. out=Ellipsis
) which is identical
in behavior to out
not being passed, but will ensure a non-scalar
return. This spelling is borrowed from arr1d[0, ...]
where the ...
also ensures a non-scalar return.
Other functions with an out=
kwarg should gain support eventually.
Downstream libraries that interoperate via __array_ufunc__
or
__array_function__
may need to adapt to support this.
(gh-28576)
Building NumPy with OpenMP Parallelization
NumPy now supports OpenMP parallel processing capabilities when built
with the -Denable_openmp=true
Meson build flag. This feature is
disabled by default. When enabled, np.sort
and np.argsort
functions
can utilize OpenMP for parallel thread execution, improving performance
for these operations.
(gh-28619)
Interactive examples in the NumPy documentation
The NumPy documentation includes a number of examples that can now be
run interactively in your browser using WebAssembly and Pyodide.
Please note that the examples are currently experimental in nature and
may not work as expected for all methods in the public API.
(gh-26745)
Improvements
-
Scalar comparisons between non-comparable dtypes such as
np.array(1) == np.array('s')
now return a NumPy bool instead of a
Python bool.(gh-27288)
-
np.nditer
now has no limit on the number of supported operands
(C-integer).(gh-28080)
-
No-copy pickling is now supported for any array that can be
transposed to a C-contiguous array.(gh-28105)
-
The
__repr__
for user-defined dtypes now prefers the__name__
of
the custom dtype over a more generic name constructed from its
kind
anditemsize
.(gh-28250)
-
np.dot
now reports floating point exceptions.(gh-28442)
-
np.dtypes.StringDType
is now a generic
type which
accepts a type argument forna_object
that defaults to
typing.Never
. For example,StringDType(na_object=None)
returns a
StringDType[None]
, andStringDType()
returns a
StringDType[typing.Never]
.(gh-28856)
Added warnings to np.isclose
Added warning messages if at least one of atol or rtol are either
np.nan
or np.inf
within np.isclose
.
- Warnings follow the user's
np.seterr
settings
(gh-28205)
Performance improvements and changes
Performance improvements to np.unique
np.unique
now tries to use a hash table to find unique values instead
of sorting values before finding unique values. This is limited to
certain dtypes for now, and the function is now faster for those dtypes.
The function now also exposes a sorted
parameter to allow returning
unique values as they were found, instead of sorting them afterwards.
(gh-26018)
Performance improvements to np.sort
and np.argsort
np.sort
and np.argsort
functions now can leverage OpenMP for
parallel thread execution, resulting in up to 3.5x speedups on x86
architectures with AVX2 or AVX-512 instructions. This opt-in feature
requires NumPy to be built with the -Denable_openmp Meson flag. Users
can control the number of threads used by setting the OMP_NUM_THREADS
environment variable.
(gh-28619)
Performance improvements for np.float16
casts
Earlier, floating point casts to and from np.float16
types were
emulated in software on all platforms.
Now, on ARM devices that support Neon float16 intrinsics (such as recent
Apple Silicon), the native float16 path is used to achieve the best
performance.
(gh-28769)
Changes
-
The vector norm
ord=inf
and the matrix norms
ord={1, 2, inf, 'nuc'}
now always returns zero for empty arrays.
Empty arrays have at least one axis of size zero. This affects
np.linalg.norm
,np.linalg.vector_norm
, and
np.linalg.matrix_norm
. Previously, NumPy would raises errors or
return zero depending on the shape of the array.(gh-28343)
-
A spelling error in the error message returned when converting a
string to a float with the methodnp.format_float_positional
has
been fixed.(gh-28569)
-
NumPy's
__array_api_version__
was upgraded from2023.12
to
2024.12
. -
numpy.count_nonzero
foraxis=None
(default) now returns a NumPy
scalar instead of a Python integer. -
The parameter
axis
innumpy.take_along_axis
function has now a
default value of-1
.(gh-28615)
-
Printing of
np.float16
andnp.float32
scalars and arrays have
been improved by adjusting the transition to scientific notation
based on the floating point precision. A new legacy
np.printoptions
mode'2.2'
has been added for backwards
compatibility.(gh-28703)
-
Multiplication between a string and integer now raises OverflowError
instead of MemoryError if the result of the multiplication would
create a string that is too large to be represented. This follows
Python's behavior.(gh-29060)
unique_values
may return unsorted data
The relatively new function (added in NumPy 2.0) unique_values
may now
return unsorted results. Just as unique_counts
and unique_all
these
never guaranteed a sorted result, however, the result was sorted until
now. In cases where these do return a sorted result, this may change in
future releases to improve performance.
(gh-26018)
Changes to the main iterator and potential numerical changes
The main iterator, used in math functions and via np.nditer
from
Python and NpyIter
in C, now behaves differently for some buffered
iterations. This means that:
- The buffer size used will often be smaller than the maximum buffer
sized allowed by thebuffersize
parameter. - The "growinner" flag is now honored with buffered reductions when
no operand requires buffering.
For np.sum()
such changes in buffersize may slightly change numerical
results of floating point operations. Users who use "growinner" for
custom reductions could notice changes in precision (for example, in
NumPy we removed it from einsum
to avoid most precision changes and
improve precision for some 64bit floating point inputs).
(gh-27883)
The minimum supported GCC version is now 9.3.0
The minimum supported version was updated from 8.4.0 to 9.3.0, primarily
in order to reduce the chance of platform-specific bugs in old GCC
versions from causing issues.
(gh-28102)
Changes to automatic bin selection in numpy.histogram
The automatic bin selection algorithm in numpy.histogram
has been
modified to avoid out-of-memory errors for samples with low variation.
For full control over the selected bins the user can use set the bin
or range
parameters of numpy.histogram
.
(gh-28426)
Build manylinux_2_28 wheels
Wheels for linux systems will use the manylinux_2_28
tag (instead of
the manylinux2014
tag), which means dropping support for
redhat7/centos7, amazonlinux2, debian9, ubuntu18.04, and other
pre-glibc2.28 operating system versions, as per the PEP 600 support
table.
(gh-28436)
Remove use of -Wl,-ld_classic on macOS
Remove use of -Wl,-ld_classic on macOS. This hack is no longer needed by
Spack, and results in libraries that cannot link to other libraries
built with ld (new).
(gh-28713)
Re-enable overriding functions in the numpy.strings
Re-enable overriding functions in the numpy.strings
module.
(gh-28741)
Checksums
MD5
cf552b6b6390343c24bf60365950c91c numpy-2.3.0-cp311-cp311-macosx_10_9_x86_64.whl
d3c377f49f84b36297cfc2fc30c6a288 numpy-2.3.0-cp311-cp311-macosx_11_0_arm64.whl
4e12cd2aea876c09fdc3aaac2d0f4bac numpy-2.3.0-cp311-cp311-macosx_14_0_arm64.whl
a33af1d4e1f0ee5ed82d7933c5df9f84 numpy-2.3.0-cp311-cp311-macosx_14_0_x86_64.whl
cd5cf04cb8b40e65aac8264c7bf3d7c9 numpy-2.3.0-cp311-cp311-manylinux_2_28_aarch64.whl
6a45424beb8f4f23e7b2b853bc18aefa numpy-2.3.0-cp311-cp311-manylinux_2_28_x86_64.whl
2dc1c1d1b9deb8c0626af68c0c00660a numpy-2.3.0-cp311-cp311-musllinux_1_2_aarch64.whl
9ff8ea227afce090dea3b4dac4653fa6 numpy-2.3.0-cp311-cp311-musllinux_1_2_x86_64.whl
a1e9e40a20187e1f5ae2f8ba165e291b numpy-2.3.0-cp311-cp311-win32.whl
819e4ac62a3449c79818ff5aa0e6b276 numpy-2.3.0-cp311-cp311-win_amd64.whl
347260edfd35535b15b8133280793080 numpy-2.3.0-cp311-cp311-win_arm64.whl
9c1ad46e637b876a0535de60f5b604bc numpy-2.3.0-cp312-cp312-macosx_10_13_x86_64.whl
5b656fbed339bcac1af6de73b15e5dba numpy-2.3.0-cp312-cp312-macosx_11_0_arm64.whl
5b86d6d0cab79d0cd381bb2e912e7e23 numpy-2.3.0-cp312-cp312-macosx_14_0_arm64.whl
ea83ef5cd00d5e42bb745eee1ee0ad3f numpy-2.3.0-cp312-cp312-macosx_14_0_x86_64.whl
15a5f57cb51d3d957c1b387c4bc54830 numpy-2.3.0-cp312-cp312-manylinux_2_28_aarch64.whl
b5fa92d1093dab4c3ca0622c29c4a241 numpy-2.3.0-cp312-cp312-manylinux_2_28_x86_64.whl
666cad26086ee212047e5ea0e8906480 numpy-2.3.0-cp312-cp312-musllinux_1_2_aarch64.whl
6263705622ca89ccadc6f458effde281 numpy-2.3.0-cp312-cp312-musllinux_1_2_x86_64.whl
bf1bf83eca701ff70351c2d7b308e181 numpy-2.3.0-cp312-cp312-win32.whl
0707b427c1102bb904994289e1555c3d numpy-2.3.0-cp312-cp312-win_amd64.whl
097bd498f8333d383db61105044906dc numpy-2.3.0-cp312-cp312-win_arm64.whl
54eb5fa0444ff5dd078bb1aa30d9533f numpy-2.3.0-cp313-cp313-macosx_10_13_x86_64.whl
004b4c3650562bd851e31fb925863acb numpy-2.3.0-cp313-cp313-macosx_11_0_arm64.whl
cd4e31304e51cc5dacd355730be25e4e numpy-2.3.0-cp313-cp313-macosx_14_0_arm64.whl
0ed70aa071f35060ee68d6ab407159e5 numpy-2.3.0-cp313-cp313-macosx_14_0_x86_64.whl
a89b304bbb52268b233ab9652fee8142 numpy-2.3.0-cp313-cp313-manylinux_2_28_aarch64.whl
4b55cf791be482e8d8e5aaba0c10b6f2 numpy-2.3.0-cp313-cp313-manylinux_2_28_x86_64.whl
d3a1b81da2f2cba4743d1ee5385cb4d6 numpy-2.3.0-cp313-cp313-musllinux_1_2_aarch64.whl
fcaacdedcd8cfec7a6cb430fba7a5553 numpy-2.3.0-cp313-cp313-musllinux_1_2_x86_64.whl
7d0deec2ad395fda48b80be59612db22 numpy-2.3.0-cp313-cp313-win32.whl
7386a22b0ef219ba043f6e085933dbd6 numpy-2.3.0-cp313-cp313-win_amd64.whl
f4559038276d0e2bfb19601484d4cdff numpy-2.3.0-cp313-cp313-win_arm64.whl
6c586985db2e888876aa96ceaf99ee66 numpy-2.3.0-cp313-cp313t-macosx_10_13_x86_64.whl
9726de30cce2b36940225a7ea086c824 numpy-2.3.0-cp313-cp313t-macosx_11_0_arm64.whl
ea021092cbb7b1e7d0984dc774bb288d numpy-2.3.0-cp313-cp313t-macosx_14_0_arm64.whl
6f8261bc789eed1d3f6f7ea9ff3c2a2c numpy-2.3.0-cp313-cp313t-macosx_14_0_x86_64.whl
ab624ddc1425d44412541aad1f012fd9 numpy-2.3.0-cp313-cp313t-manylinux_2_28_aarch64.whl
af55bc7a8f46ec8d413eb1fbe2c200e9 numpy-2.3.0-cp313-cp313t-manylinux_2_28_x86_64.whl
830eecf7c372aa0d7d746ad031ff0ba1 numpy-2.3.0-cp313-cp313t-musllinux_1_2_aarch64.whl
28870039fde4fec369185e185bf0077e numpy-2.3.0-cp313-cp313t-musllinux_1_2_x86_64.whl
4510373c08383787c263a4b5a21a24ef numpy-2.3.0-cp313-cp313t-win32.whl
de883c4313f4dc984045a51b8edb4084 numpy-2.3.0-cp313-cp313t-win_amd64.whl
334f5c275a6aad46e5f46436572d3dc1 numpy-2.3.0-cp313-cp313t-win_arm64.whl
05b86d4a21a832e20e4ebdc6febf298d numpy-2.3.0-pp311-pypy311_pp73-macosx_10_15_x86_64.whl
4589038edf55f085252f194e880d7454 numpy-2.3.0-pp311-pypy311_pp73-macosx_14_0_arm64.whl
7d8f0554035717dc396de7d77c696377 numpy-2.3.0-pp311-pypy311_pp73-macosx_14_0_x86_64.whl
c0cb89f0dca94446e6aa472ec6874c22 numpy-2.3.0-pp311-pypy311_pp73-manylinux_2_28_aarch64.whl
14e43315dea5eddffe888986e47d8584 numpy-2.3.0-pp311-pypy311_pp73-manylinux_2_28_x86_64.whl
e3688182f8551c3c99b559c1696d41dc numpy-2.3.0-pp311-pypy311_pp73-win_amd64.whl
19a5470a37d066bd3e9385918d7760e7 numpy-2.3.0.tar.gz
SHA256
c3c9fdde0fa18afa1099d6257eb82890ea4f3102847e692193b54e00312a9ae9 numpy-2.3.0-cp311-cp311-macosx_10_9_x86_64.whl
46d16f72c2192da7b83984aa5455baee640e33a9f1e61e656f29adf55e406c2b numpy-2.3.0-cp311-cp311-macosx_11_0_arm64.whl
a0be278be9307c4ab06b788f2a077f05e180aea817b3e41cebbd5aaf7bd85ed3 numpy-2.3.0-cp311-cp311-macosx_14_0_arm64.whl
99224862d1412d2562248d4710126355d3a8db7672170a39d6909ac47687a8a4 numpy-2.3.0-cp311-cp311-macosx_14_0_x86_64.whl
2393a914db64b0ead0ab80c962e42d09d5f385802006a6c87835acb1f58adb96 numpy-2.3.0-cp311-cp311-manylinux_2_28_aarch64.whl
7729c8008d55e80784bd113787ce876ca117185c579c0d626f59b87d433ea779 numpy-2.3.0-cp311-cp311-manylinux_2_28_x86_64.whl
06d4fb37a8d383b769281714897420c5cc3545c79dc427df57fc9b852ee0bf58 numpy-2.3.0-cp311-cp311-musllinux_1_2_aarch64.whl
c39ec392b5db5088259c68250e342612db82dc80ce044cf16496cf14cf6bc6f8 numpy-2.3.0-cp311-cp311-musllinux_1_2_x86_64.whl
ee9d3ee70d62827bc91f3ea5eee33153212c41f639918550ac0475e3588da59f numpy-2.3.0-cp311-cp311-win32.whl
43c55b6a860b0eb44d42341438b03513cf3879cb3617afb749ad49307e164edd numpy-2.3.0-cp311-cp311-win_amd64.whl
2e6a1409eee0cb0316cb64640a49a49ca44deb1a537e6b1121dc7c458a1299a8 numpy-2.3.0-cp311-cp311-win_arm64.whl
389b85335838155a9076e9ad7f8fdba0827496ec2d2dc32ce69ce7898bde03ba numpy-2.3.0-cp312-cp312-macosx_10_13_x86_64.whl
9498f60cd6bb8238d8eaf468a3d5bb031d34cd12556af53510f05fcf581c1b7e numpy-2.3.0-cp312-cp312-macosx_11_0_arm64.whl
622a65d40d8eb427d8e722fd410ac3ad4958002f109230bc714fa551044ebae2 numpy-2.3.0-cp312-cp312-macosx_14_0_arm64.whl
b9446d9d8505aadadb686d51d838f2b6688c9e85636a0c3abaeb55ed54756459 numpy-2.3.0-cp312-cp312-macosx_14_0_x86_64.whl
50080245365d75137a2bf46151e975de63146ae6d79f7e6bd5c0e85c9931d06a numpy-2.3.0-cp312-cp312-manylinux_2_28_aarch64.whl
c24bb4113c66936eeaa0dc1e47c74770453d34f46ee07ae4efd853a2ed1ad10a numpy-2.3.0-cp312-cp312-manylinux_2_28_x86_64.whl
4d8d294287fdf685281e671886c6dcdf0291a7c19db3e5cb4178d07ccf6ecc67 numpy-2.3.0-cp312-cp312-musllinux_1_2_aarch64.whl
6295f81f093b7f5769d1728a6bd8bf7466de2adfa771ede944ce6711382b89dc numpy-2.3.0-cp312-cp312-musllinux_1_2_x86_64.whl
e6648078bdd974ef5d15cecc31b0c410e2e24178a6e10bf511e0557eed0f2570 numpy-2.3.0-cp312-cp312-win32.whl
0898c67a58cdaaf29994bc0e2c65230fd4de0ac40afaf1584ed0b02cd74c6fdd numpy-2.3.0-cp312-cp312-win_amd64.whl
bd8df082b6c4695753ad6193018c05aac465d634834dca47a3ae06d4bb22d9ea numpy-2.3.0-cp312-cp312-win_arm64.whl
5754ab5595bfa2c2387d241296e0381c21f44a4b90a776c3c1d39eede13a746a numpy-2.3.0-cp313-cp313-macosx_10_13_x86_64.whl
d11fa02f77752d8099573d64e5fe33de3229b6632036ec08f7080f46b6649959 numpy-2.3.0-cp313-cp313-macosx_11_0_arm64.whl
aba48d17e87688a765ab1cd557882052f238e2f36545dfa8e29e6a91aef77afe numpy-2.3.0-cp313-cp313-macosx_14_0_arm64.whl
4dc58865623023b63b10d52f18abaac3729346a7a46a778381e0e3af4b7f3beb numpy-2.3.0-cp313-cp313-macosx_14_0_x86_64.whl
df470d376f54e052c76517393fa443758fefcdd634645bc9c1f84eafc67087f0 numpy-2.3.0-cp313-cp313-manylinux_2_28_aarch64.whl
87717eb24d4a8a64683b7a4e91ace04e2f5c7c77872f823f02a94feee186168f numpy-2.3.0-cp313-cp313-manylinux_2_28_x86_64.whl
d8fa264d56882b59dcb5ea4d6ab6f31d0c58a57b41aec605848b6eb2ef4a43e8 numpy-2.3.0-cp313-cp313-musllinux_1_2_aarch64.whl
e651756066a0eaf900916497e20e02fe1ae544187cb0fe88de981671ee7f6270 numpy-2.3.0-cp313-cp313-musllinux_1_2_x86_64.whl
e43c3cce3b6ae5f94696669ff2a6eafd9a6b9332008bafa4117af70f4b88be6f numpy-2.3.0-cp313-cp313-win32.whl
81ae0bf2564cf475f94be4a27ef7bcf8af0c3e28da46770fc904da9abd5279b5 numpy-2.3.0-cp313-cp313-win_amd64.whl
c8738baa52505fa6e82778580b23f945e3578412554d937093eac9205e845e6e numpy-2.3.0-cp313-cp313-win_arm64.whl
39b27d8b38942a647f048b675f134dd5a567f95bfff481f9109ec308515c51d8 numpy-2.3.0-cp313-cp313t-macosx_10_13_x86_64.whl
0eba4a1ea88f9a6f30f56fdafdeb8da3774349eacddab9581a21234b8535d3d3 numpy-2.3.0-cp313-cp313t-macosx_11_0_arm64.whl
b0f1f11d0a1da54927436505a5a7670b154eac27f5672afc389661013dfe3d4f numpy-2.3.0-cp313-cp313t-macosx_14_0_arm64.whl
690d0a5b60a47e1f9dcec7b77750a4854c0d690e9058b7bef3106e3ae9117808 numpy-2.3.0-cp313-cp313t-macosx_14_0_x86_64.whl
8b51ead2b258284458e570942137155978583e407babc22e3d0ed7af33ce06f8 numpy-2.3.0-cp313-cp313t-manylinux_2_28_aarch64.whl
aaf81c7b82c73bd9b45e79cfb9476cb9c29e937494bfe9092c26aece812818ad numpy-2.3.0-cp313-cp313t-manylinux_2_28_x86_64.whl
f420033a20b4f6a2a11f585f93c843ac40686a7c3fa514060a97d9de93e5e72b numpy-2.3.0-cp313-cp313t-musllinux_1_2_aarch64.whl
d344ca32ab482bcf8735d8f95091ad081f97120546f3d250240868430ce52555 numpy-2.3.0-cp313-cp313t-musllinux_1_2_x86_64.whl
48a2e8eaf76364c32a1feaa60d6925eaf32ed7a040183b807e02674305beef61 numpy-2.3.0-cp313-cp313t-win32.whl
ba17f93a94e503551f154de210e4d50c5e3ee20f7e7a1b5f6ce3f22d419b93bb numpy-2.3.0-cp313-cp313t-win_amd64.whl
f14e016d9409680959691c109be98c436c6249eaf7f118b424679793607b5944 numpy-2.3.0-cp313-cp313t-win_arm64.whl
80b46117c7359de8167cc00a2c7d823bdd505e8c7727ae0871025a86d668283b numpy-2.3.0-pp311-pypy311_pp73-macosx_10_15_x86_64.whl
5814a0f43e70c061f47abd5857d120179609ddc32a613138cbb6c4e9e2dbdda5 numpy-2.3.0-pp311-pypy311_pp73-macosx_14_0_arm64.whl
ef6c1e88fd6b81ac6d215ed71dc8cd027e54d4bf1d2682d362449097156267a2 numpy-2.3.0-pp311-pypy311_pp73-macosx_14_0_x86_64.whl
33a5a12a45bb82d9997e2c0b12adae97507ad7c347546190a18ff14c28bbca12 numpy-2.3.0-pp311-pypy311_pp73-manylinux_2_28_aarch64.whl
54dfc8681c1906d239e95ab1508d0a533c4a9505e52ee2d71a5472b04437ef97 numpy-2.3.0-pp311-pypy311_pp73-manylinux_2_28_x86_64.whl
e017a8a251ff4d18d71f139e28bdc7c31edba7a507f72b1414ed902cbe48c74d numpy-2.3.0-pp311-pypy311_pp73-win_amd64.whl
581f87f9e9e9db2cba2141400e160e9dd644ee248788d6f90636eeb8fd9260a6 numpy-2.3.0.tar.gz