@@ -103,14 +103,14 @@ namespace cv {
103
103
104
104
void setLayerBlobs (int i, std::vector<cv::Mat> blobs)
105
105
{
106
- cv::dnn::experimental_dnn_v1:: LayerParams ¶ms = net->layers [i].layerParams ;
106
+ cv::dnn::LayerParams ¶ms = net->layers [i].layerParams ;
107
107
params.blobs = blobs;
108
108
}
109
109
110
- cv::dnn::experimental_dnn_v1:: LayerParams getParamConvolution (int kernel, int pad,
110
+ cv::dnn::LayerParams getParamConvolution (int kernel, int pad,
111
111
int stride, int filters_num)
112
112
{
113
- cv::dnn::experimental_dnn_v1:: LayerParams params;
113
+ cv::dnn::LayerParams params;
114
114
params.name = " Convolution-name" ;
115
115
params.type = " Convolution" ;
116
116
@@ -128,7 +128,7 @@ namespace cv {
128
128
void setConvolution (int kernel, int pad, int stride,
129
129
int filters_num, int channels_num, int use_batch_normalize, int use_relu)
130
130
{
131
- cv::dnn::experimental_dnn_v1:: LayerParams conv_param =
131
+ cv::dnn::LayerParams conv_param =
132
132
getParamConvolution (kernel, pad, stride, filters_num);
133
133
134
134
darknet::LayerParameter lp;
@@ -148,7 +148,7 @@ namespace cv {
148
148
149
149
if (use_batch_normalize)
150
150
{
151
- cv::dnn::experimental_dnn_v1:: LayerParams bn_param;
151
+ cv::dnn::LayerParams bn_param;
152
152
153
153
bn_param.name = " BatchNorm-name" ;
154
154
bn_param.type = " BatchNorm" ;
@@ -168,7 +168,7 @@ namespace cv {
168
168
169
169
if (use_relu)
170
170
{
171
- cv::dnn::experimental_dnn_v1:: LayerParams activation_param;
171
+ cv::dnn::LayerParams activation_param;
172
172
activation_param.set <float >(" negative_slope" , 0 .1f );
173
173
activation_param.name = " ReLU-name" ;
174
174
activation_param.type = " ReLU" ;
@@ -189,7 +189,7 @@ namespace cv {
189
189
190
190
void setMaxpool (size_t kernel, size_t pad, size_t stride)
191
191
{
192
- cv::dnn::experimental_dnn_v1:: LayerParams maxpool_param;
192
+ cv::dnn::LayerParams maxpool_param;
193
193
maxpool_param.set <cv::String>(" pool" , " max" );
194
194
maxpool_param.set <int >(" kernel_size" , kernel);
195
195
maxpool_param.set <int >(" pad" , pad);
@@ -212,7 +212,7 @@ namespace cv {
212
212
213
213
void setConcat (int number_of_inputs, int *input_indexes)
214
214
{
215
- cv::dnn::experimental_dnn_v1:: LayerParams concat_param;
215
+ cv::dnn::LayerParams concat_param;
216
216
concat_param.name = " Concat-name" ;
217
217
concat_param.type = " Concat" ;
218
218
concat_param.set <int >(" axis" , 1 ); // channels are in axis = 1
@@ -235,7 +235,7 @@ namespace cv {
235
235
236
236
void setIdentity (int bottom_index)
237
237
{
238
- cv::dnn::experimental_dnn_v1:: LayerParams identity_param;
238
+ cv::dnn::LayerParams identity_param;
239
239
identity_param.name = " Identity-name" ;
240
240
identity_param.type = " Identity" ;
241
241
@@ -256,7 +256,7 @@ namespace cv {
256
256
257
257
void setReorg (int stride)
258
258
{
259
- cv::dnn::experimental_dnn_v1:: LayerParams reorg_params;
259
+ cv::dnn::LayerParams reorg_params;
260
260
reorg_params.name = " Reorg-name" ;
261
261
reorg_params.type = " Reorg" ;
262
262
reorg_params.set <int >(" reorg_stride" , stride);
@@ -277,7 +277,7 @@ namespace cv {
277
277
278
278
void setPermute ()
279
279
{
280
- cv::dnn::experimental_dnn_v1:: LayerParams permute_params;
280
+ cv::dnn::LayerParams permute_params;
281
281
permute_params.name = " Permute-name" ;
282
282
permute_params.type = " Permute" ;
283
283
int permute[] = { 0 , 2 , 3 , 1 };
@@ -300,7 +300,7 @@ namespace cv {
300
300
301
301
void setRegion (float thresh, int coords, int classes, int anchors, int classfix, int softmax, int softmax_tree, float *biasData)
302
302
{
303
- cv::dnn::experimental_dnn_v1:: LayerParams region_param;
303
+ cv::dnn::LayerParams region_param;
304
304
region_param.name = " Region-name" ;
305
305
region_param.type = " Region" ;
306
306
0 commit comments