|
| 1 | +/*M/////////////////////////////////////////////////////////////////////////////////////// |
| 2 | +// |
| 3 | +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
| 4 | +// |
| 5 | +// By downloading, copying, installing or using the software you agree to this license. |
| 6 | +// If you do not agree to this license, do not download, install, |
| 7 | +// copy or use the software. |
| 8 | +// |
| 9 | +// |
| 10 | +// License Agreement |
| 11 | +// For Open Source Computer Vision Library |
| 12 | +// (3-clause BSD License) |
| 13 | +// |
| 14 | +// Copyright (C) 2017, Intel Corporation, all rights reserved. |
| 15 | +// Third party copyrights are property of their respective owners. |
| 16 | +// |
| 17 | +// Redistribution and use in source and binary forms, with or without modification, |
| 18 | +// are permitted provided that the following conditions are met: |
| 19 | +// |
| 20 | +// * Redistributions of source code must retain the above copyright notice, |
| 21 | +// this list of conditions and the following disclaimer. |
| 22 | +// |
| 23 | +// * Redistributions in binary form must reproduce the above copyright notice, |
| 24 | +// this list of conditions and the following disclaimer in the documentation |
| 25 | +// and/or other materials provided with the distribution. |
| 26 | +// |
| 27 | +// * Neither the names of the copyright holders nor the names of the contributors |
| 28 | +// may be used to endorse or promote products derived from this software |
| 29 | +// without specific prior written permission. |
| 30 | +// |
| 31 | +// This software is provided by the copyright holders and contributors "as is" and |
| 32 | +// any express or implied warranties, including, but not limited to, the implied |
| 33 | +// warranties of merchantability and fitness for a particular purpose are disclaimed. |
| 34 | +// In no event shall copyright holders or contributors be liable for any direct, |
| 35 | +// indirect, incidental, special, exemplary, or consequential damages |
| 36 | +// (including, but not limited to, procurement of substitute goods or services; |
| 37 | +// loss of use, data, or profits; or business interruption) however caused |
| 38 | +// and on any theory of liability, whether in contract, strict liability, |
| 39 | +// or tort (including negligence or otherwise) arising in any way out of |
| 40 | +// the use of this software, even if advised of the possibility of such damage. |
| 41 | +// |
| 42 | +//M*/ |
| 43 | + |
| 44 | +#include "../precomp.hpp" |
| 45 | + |
| 46 | +#include <iostream> |
| 47 | +#include <algorithm> |
| 48 | +#include <vector> |
| 49 | +#include <map> |
| 50 | + |
| 51 | +#include "darknet_io.hpp" |
| 52 | + |
| 53 | + |
| 54 | +namespace cv { |
| 55 | +namespace dnn { |
| 56 | +CV__DNN_EXPERIMENTAL_NS_BEGIN |
| 57 | + |
| 58 | +namespace |
| 59 | +{ |
| 60 | + |
| 61 | +class DarknetImporter : public Importer |
| 62 | +{ |
| 63 | + darknet::NetParameter net; |
| 64 | + |
| 65 | +public: |
| 66 | + |
| 67 | + DarknetImporter() {} |
| 68 | + |
| 69 | + DarknetImporter(const char *cfgFile, const char *darknetModel) |
| 70 | + { |
| 71 | + CV_TRACE_FUNCTION(); |
| 72 | + |
| 73 | + ReadNetParamsFromCfgFileOrDie(cfgFile, &net); |
| 74 | + |
| 75 | + if (darknetModel && darknetModel[0]) |
| 76 | + ReadNetParamsFromBinaryFileOrDie(darknetModel, &net); |
| 77 | + } |
| 78 | + |
| 79 | + struct BlobNote |
| 80 | + { |
| 81 | + BlobNote(const std::string &_name, int _layerId, int _outNum) : |
| 82 | + name(_name), layerId(_layerId), outNum(_outNum) {} |
| 83 | + |
| 84 | + std::string name; |
| 85 | + int layerId, outNum; |
| 86 | + }; |
| 87 | + |
| 88 | + std::vector<BlobNote> addedBlobs; |
| 89 | + std::map<String, int> layerCounter; |
| 90 | + |
| 91 | + void populateNet(Net dstNet) |
| 92 | + { |
| 93 | + CV_TRACE_FUNCTION(); |
| 94 | + |
| 95 | + int layersSize = net.layer_size(); |
| 96 | + layerCounter.clear(); |
| 97 | + addedBlobs.clear(); |
| 98 | + addedBlobs.reserve(layersSize + 1); |
| 99 | + |
| 100 | + //setup input layer names |
| 101 | + { |
| 102 | + std::vector<String> netInputs(net.input_size()); |
| 103 | + for (int inNum = 0; inNum < net.input_size(); inNum++) |
| 104 | + { |
| 105 | + addedBlobs.push_back(BlobNote(net.input(inNum), 0, inNum)); |
| 106 | + netInputs[inNum] = net.input(inNum); |
| 107 | + } |
| 108 | + dstNet.setInputsNames(netInputs); |
| 109 | + } |
| 110 | + |
| 111 | + for (int li = 0; li < layersSize; li++) |
| 112 | + { |
| 113 | + const darknet::LayerParameter &layer = net.layer(li); |
| 114 | + String name = layer.name(); |
| 115 | + String type = layer.type(); |
| 116 | + LayerParams layerParams = layer.getLayerParams(); |
| 117 | + |
| 118 | + int repetitions = layerCounter[name]++; |
| 119 | + if (repetitions) |
| 120 | + name += cv::format("_%d", repetitions); |
| 121 | + |
| 122 | + int id = dstNet.addLayer(name, type, layerParams); |
| 123 | + |
| 124 | + // iterate many bottoms layers (for example for: route -1, -4) |
| 125 | + for (int inNum = 0; inNum < layer.bottom_size(); inNum++) |
| 126 | + addInput(layer.bottom(inNum), id, inNum, dstNet, layer.name()); |
| 127 | + |
| 128 | + for (int outNum = 0; outNum < layer.top_size(); outNum++) |
| 129 | + addOutput(layer, id, outNum); |
| 130 | + } |
| 131 | + |
| 132 | + addedBlobs.clear(); |
| 133 | + } |
| 134 | + |
| 135 | + void addOutput(const darknet::LayerParameter &layer, int layerId, int outNum) |
| 136 | + { |
| 137 | + const std::string &name = layer.top(outNum); |
| 138 | + |
| 139 | + bool haveDups = false; |
| 140 | + for (int idx = (int)addedBlobs.size() - 1; idx >= 0; idx--) |
| 141 | + { |
| 142 | + if (addedBlobs[idx].name == name) |
| 143 | + { |
| 144 | + haveDups = true; |
| 145 | + break; |
| 146 | + } |
| 147 | + } |
| 148 | + |
| 149 | + if (haveDups) |
| 150 | + { |
| 151 | + bool isInplace = layer.bottom_size() > outNum && layer.bottom(outNum) == name; |
| 152 | + if (!isInplace) |
| 153 | + CV_Error(Error::StsBadArg, "Duplicate blobs produced by multiple sources"); |
| 154 | + } |
| 155 | + |
| 156 | + addedBlobs.push_back(BlobNote(name, layerId, outNum)); |
| 157 | + } |
| 158 | + |
| 159 | + void addInput(const std::string &name, int layerId, int inNum, Net &dstNet, std::string nn) |
| 160 | + { |
| 161 | + int idx; |
| 162 | + for (idx = (int)addedBlobs.size() - 1; idx >= 0; idx--) |
| 163 | + { |
| 164 | + if (addedBlobs[idx].name == name) |
| 165 | + break; |
| 166 | + } |
| 167 | + |
| 168 | + if (idx < 0) |
| 169 | + { |
| 170 | + CV_Error(Error::StsObjectNotFound, "Can't find output blob \"" + name + "\""); |
| 171 | + return; |
| 172 | + } |
| 173 | + |
| 174 | + dstNet.connect(addedBlobs[idx].layerId, addedBlobs[idx].outNum, layerId, inNum); |
| 175 | + } |
| 176 | + |
| 177 | + ~DarknetImporter() |
| 178 | + { |
| 179 | + |
| 180 | + } |
| 181 | + |
| 182 | +}; |
| 183 | + |
| 184 | +} |
| 185 | + |
| 186 | +Net readNetFromDarknet(const String &cfgFile, const String &darknetModel /*= String()*/) |
| 187 | +{ |
| 188 | + DarknetImporter darknetImporter(cfgFile.c_str(), darknetModel.c_str()); |
| 189 | + Net net; |
| 190 | + darknetImporter.populateNet(net); |
| 191 | + return net; |
| 192 | +} |
| 193 | + |
| 194 | +CV__DNN_EXPERIMENTAL_NS_END |
| 195 | +}} // namespace |
0 commit comments