@@ -436,6 +436,10 @@ def ridge_regression(
436
436
reasons, using `alpha = 0` with the `Ridge` object is not advised.
437
437
Instead, you should use the :class:`LinearRegression` object.
438
438
439
+ For an example on how the model coefficients
440
+ vary with the regularization strength,
441
+ see :ref:`<sphx_glr_auto_examples_linear_model_plot_ridge_coeffs.py>`.
442
+
439
443
If an array is passed, penalties are assumed to be specific to the
440
444
targets. Hence they must correspond in number.
441
445
@@ -1038,9 +1042,9 @@ class Ridge(MultiOutputMixin, RegressorMixin, _BaseRidge):
1038
1042
If an array is passed, penalties are assumed to be specific to the
1039
1043
targets. Hence they must correspond in number.
1040
1044
1041
- See :ref:`Ridge coefficients as a function of the L2 Regularization
1042
- <sphx_glr_auto_examples_linear_model_plot_ridge_coeffs.py>` for an example
1043
- on how the model coefficients vary with the regularization strength.
1045
+ See :ref:`<sphx_glr_auto_examples_linear_model_plot_ridge_coeffs.py>`
1046
+ for an example on how the model coefficients
1047
+ vary with the regularization strength.
1044
1048
1045
1049
fit_intercept : bool, default=True
1046
1050
Whether to fit the intercept for this model. If set
@@ -1369,6 +1373,10 @@ class RidgeClassifier(_RidgeClassifierMixin, _BaseRidge):
1369
1373
:class:`~sklearn.linear_model.LogisticRegression` or
1370
1374
:class:`~sklearn.svm.LinearSVC`.
1371
1375
1376
+ For an example on how the model coefficients vary
1377
+ with the regularization strength,
1378
+ see :ref:`<sphx_glr_auto_examples_linear_model_plot_ridge_coeffs.py>`.
1379
+
1372
1380
fit_intercept : bool, default=True
1373
1381
Whether to calculate the intercept for this model. If set to false, no
1374
1382
intercept will be used in calculations (e.g. data is expected to be
@@ -2537,6 +2545,10 @@ class RidgeCV(MultiOutputMixin, RegressorMixin, _BaseRidgeCV):
2537
2545
:class:`~sklearn.svm.LinearSVC`.
2538
2546
If using Leave-One-Out cross-validation, alphas must be strictly positive.
2539
2547
2548
+ For an example on how the model coefficients vary
2549
+ with the regularization strength,
2550
+ see :ref:`<sphx_glr_auto_examples_linear_model_plot_ridge_coeffs.py>`.
2551
+
2540
2552
fit_intercept : bool, default=True
2541
2553
Whether to calculate the intercept for this model. If set
2542
2554
to false, no intercept will be used in calculations
@@ -2721,6 +2733,10 @@ class RidgeClassifierCV(_RidgeClassifierMixin, _BaseRidgeCV):
2721
2733
:class:`~sklearn.svm.LinearSVC`.
2722
2734
If using Leave-One-Out cross-validation, alphas must be strictly positive.
2723
2735
2736
+ For an example on how the model coefficients vary
2737
+ with the regularization strength,
2738
+ see :ref:`<sphx_glr_auto_examples_linear_model_plot_ridge_coeffs.py>`.
2739
+
2724
2740
fit_intercept : bool, default=True
2725
2741
Whether to calculate the intercept for this model. If set
2726
2742
to false, no intercept will be used in calculations
0 commit comments