|
5 | 5 |
|
6 | 6 | ### 1.1.1 二叉树节点定义
|
7 | 7 |
|
8 |
| -```Java |
9 |
| - Class Node{ |
10 |
| - // 节点的值类型 |
11 |
| - V value; |
12 |
| - // 二叉树的左孩子指针 |
13 |
| - Node left; |
14 |
| - // 二叉树的右孩子指针 |
15 |
| - Node right; |
16 |
| - } |
| 8 | +```Go |
| 9 | +type Node struct { |
| 10 | + // 二叉树节点上的值 |
| 11 | + Val int |
| 12 | + // 左孩子 |
| 13 | + Left *Node |
| 14 | + // 右孩子 |
| 15 | + Right *Node |
| 16 | +} |
17 | 17 | ```
|
18 | 18 |
|
19 | 19 | ### 1.1.2 递归实现先序中序后序遍历
|
@@ -42,89 +42,108 @@ graph TD
|
42 | 42 |
|
43 | 43 | 3、 后序遍历为:4 5 2 6 7 3 1
|
44 | 44 |
|
45 |
| -```Java |
46 |
| -package class07; |
47 |
| - |
48 |
| -public class Code01_RecursiveTraversalBT { |
49 |
| - |
50 |
| - public static class Node { |
51 |
| - public int value; |
52 |
| - public Node left; |
53 |
| - public Node right; |
54 |
| - |
55 |
| - public Node(int v) { |
56 |
| - value = v; |
57 |
| - } |
58 |
| - } |
| 45 | +```Go |
| 46 | +package main |
59 | 47 |
|
60 |
| - public static void f(Node head) { |
61 |
| - if (head == null) { |
62 |
| - return; |
63 |
| - } |
64 |
| - // 1 此处打印等于先序 |
65 |
| - f(head.left); |
66 |
| - // 2 此处打印等于中序 |
67 |
| - f(head.right); |
68 |
| - // 3 此处打印等于后序 |
69 |
| - } |
| 48 | +import "fmt" |
70 | 49 |
|
71 |
| - // 先序打印所有节点 |
72 |
| - public static void pre(Node head) { |
73 |
| - if (head == null) { |
74 |
| - return; |
75 |
| - } |
76 |
| - // 打印头 |
77 |
| - System.out.println(head.value); |
78 |
| - // 递归打印左子树 |
79 |
| - pre(head.left); |
80 |
| - // 递归打印右子树 |
81 |
| - pre(head.right); |
82 |
| - } |
| 50 | +type Node struct { |
| 51 | + // 二叉树节点上的值 |
| 52 | + Val int |
| 53 | + // 左孩子 |
| 54 | + Left *Node |
| 55 | + // 右孩子 |
| 56 | + Right *Node |
| 57 | +} |
83 | 58 |
|
84 |
| - // 中序遍历 |
85 |
| - public static void in(Node head) { |
86 |
| - if (head == null) { |
87 |
| - return; |
88 |
| - } |
89 |
| - in(head.left); |
90 |
| - System.out.println(head.value); |
91 |
| - in(head.right); |
| 59 | +// Pre 给定二叉树头节点,先序遍历该二叉树 |
| 60 | +func (head *Node) Pre() { |
| 61 | + if head == nil { |
| 62 | + return |
92 | 63 | }
|
| 64 | + // 获取头节点,打印该头结点 |
| 65 | + fmt.Println(head.Val) |
| 66 | + // 递归遍历左子树 |
| 67 | + head.Left.Pre() |
| 68 | + // 递归遍历右子树 |
| 69 | + head.Right.Pre() |
| 70 | +} |
93 | 71 |
|
94 |
| - // 后序遍历 |
95 |
| - public static void pos(Node head) { |
96 |
| - if (head == null) { |
97 |
| - return; |
98 |
| - } |
99 |
| - pos(head.left); |
100 |
| - pos(head.right); |
101 |
| - System.out.println(head.value); |
| 72 | +// Mid 给定二叉树头节点,中序遍历该二叉树 |
| 73 | +func (head *Node) Mid() { |
| 74 | + if head == nil { |
| 75 | + return |
102 | 76 | }
|
| 77 | + // 递归遍历左子树 |
| 78 | + head.Left.Mid() |
| 79 | + // 获取头节点,打印该头结点 |
| 80 | + fmt.Println(head.Val) |
| 81 | + // 递归遍历右子树 |
| 82 | + head.Right.Mid() |
| 83 | +} |
103 | 84 |
|
104 |
| - public static void main(String[] args) { |
105 |
| - Node head = new Node(1); |
106 |
| - head.left = new Node(2); |
107 |
| - head.right = new Node(3); |
108 |
| - head.left.left = new Node(4); |
109 |
| - head.left.right = new Node(5); |
110 |
| - head.right.left = new Node(6); |
111 |
| - head.right.right = new Node(7); |
112 |
| - |
113 |
| - pre(head); |
114 |
| - System.out.println("========"); |
115 |
| - in(head); |
116 |
| - System.out.println("========"); |
117 |
| - pos(head); |
118 |
| - System.out.println("========"); |
119 |
| - |
| 85 | +// Pos 给定二叉树头节点,后序遍历该二叉树 |
| 86 | +func (head *Node) Pos() { |
| 87 | + if head == nil { |
| 88 | + return |
120 | 89 | }
|
| 90 | + // 递归遍历左子树 |
| 91 | + head.Left.Pos() |
| 92 | + // 递归遍历右子树 |
| 93 | + head.Right.Pos() |
| 94 | + // 获取头节点,打印该头结点 |
| 95 | + fmt.Println(head.Val) |
| 96 | +} |
121 | 97 |
|
| 98 | +func main() { |
| 99 | + head := &Node{Val: 1} |
| 100 | + head.Left = &Node{Val: 2} |
| 101 | + head.Right = &Node{Val: 3} |
| 102 | + head.Left.Left = &Node{Val: 4} |
| 103 | + head.Left.Right = &Node{Val: 5} |
| 104 | + head.Right.Left = &Node{Val: 6} |
| 105 | + head.Right.Right = &Node{Val: 7} |
| 106 | + |
| 107 | + head.Pre() |
| 108 | + fmt.Println("=========") |
| 109 | + head.Mid() |
| 110 | + fmt.Println("=========") |
| 111 | + head.Pos() |
122 | 112 | }
|
123 | 113 | ```
|
124 | 114 |
|
125 |
| -> 结论:对于树的递归,每个节点实质上会到达三次,例如上文的树结构,对于f函数,我们传入头结点,再调用左树再调用右树。实质上经过的路径为1 2 4 4 4 2 5 5 5 2 1 3 6 6 6 3 7 7 7 3 1。我们在每个节点三次返回的基础上,第一次到达该节点就打印,就是先序,第二次到达该节点打印就是中序,第三次到达该节点就是后序。 |
| 115 | +输出: |
| 116 | + |
| 117 | +```shell |
| 118 | +1 |
| 119 | +2 |
| 120 | +4 |
| 121 | +5 |
| 122 | +3 |
| 123 | +6 |
| 124 | +7 |
| 125 | +========= |
| 126 | +4 |
| 127 | +2 |
| 128 | +5 |
| 129 | +1 |
| 130 | +6 |
| 131 | +3 |
| 132 | +7 |
| 133 | +========= |
| 134 | +4 |
| 135 | +5 |
| 136 | +2 |
| 137 | +6 |
| 138 | +7 |
| 139 | +3 |
| 140 | +1 |
| 141 | + |
| 142 | +Process finished with the exit code 0 |
| 143 | + |
| 144 | +``` |
126 | 145 |
|
127 |
| -> 所以先序中序后序,只是我们的递归顺序加工出来的结果! |
| 146 | +> 总结:对于树的递归,每个节点在递归的过程中实质上会到达三次,例如上文的树结构,我们在第一次到达当前节点就打印,对于以当前节点为树根的树,就是先序。同理,第二次到达当前节点就是中序,第三次到达该节点就是后序遍历。所以先序中序后序,只是我们的递归顺序加工出来的结果而已 |
128 | 147 |
|
129 | 148 | ### 1.1.3 非递归实现先序中序后序遍历(DFS)
|
130 | 149 |
|
|
0 commit comments