You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Understand and build embedding models, focusing on word and sentence embeddings, dual encoder architectures. Learn to train embedding models using contrastive loss, implement them in semantic search and RAG systems.
This GitHub repository contains the complete code for building Business-Ready Generative AI Systems (GenAISys) from scratch. It guides you through architecting and implementing advanced AI controllers, intelligent agents, and dynamic RAG frameworks. The projects demonstrate practical applications across various domains.
💻 AI_CodeSolver is an intelligent assistant for developers, students, and coding enthusiasts, helping with learning, solving algorithmic problems, and debugging code.
PromptWeaver: RAG Edition helps design effective prompts for Traditional, Hybrid, and Agentic RAG systems. It offers templates, system prompts, and best practices to improve accuracy, context use, and LLM reasoning.
Conceptual proposal for a distributed AI personality system where each device hosts a unique avatar and shares semantic memory. Inspired by the vision of a collaborative, growing AI companion.
Symbiogenesis is a memory-powered AI interface that evolves with you — combining neural recall (Mnemosyne) and predictive interaction (Prometheus) to enable true consciousness partnership.
This repository presents a constructive AI framework that integrates modules such as knowledge generation, inference, adaptation, and self-reconstruction into a unified architecture. 本リポジトリは、知識生成・推論・適応・自己再構築などを統合した構成的AIの枠組みを示します。
This engine models adaptive reasoning by integrating metacognitive feedback, enabling systems to refine their decision-making through self-evaluation and dynamic restructuring. 本エンジンはメタ認知的フィードバックを統合し、自己評価と動的再構成を通じて意思決定を洗練させる適応的推論をモデル化します。
認知プロセスを階層化し、感覚・推論・目標設定などの各レイヤーを動的に接続する構造的アーキテクチャ。AI・ロボット・教育・会話エージェントなどにおいて、複数段階の意思決定を統合的に制御する枠組みを提供する。 This architecture provides a constructive cognitive framework for hierarchically structured control from sensory input to goal-directed commands, applicable to AI agents, robotics, and multi-stage decision systems.
AITL構想に基づく国家レベルのAI×制御×物理統合設計に関する戦略提案書(教育・産業・防災対応) National-level strategic proposal for the AITL architecture: AI x Control x Physical integration for education, industry, and disaster resilience in Japan.
This theory defines a generative feedback mechanism that restructures internal architectures in response to input variation. It enhances learning adaptability and dynamic performance control by embedding structural self-modification. 本理論は、入力変化に応じて内部構造を再構成する生成型フィードバック機構を定義します。構造の自己修正を組み込むことで、学習適応性や動的な性能制御を向上させます。
知識の冗長を抑え、意味構造を保ったまま情報を圧縮する構成的手法を提案します。 学習モデル、AI応答、教育設計などでの知識再構成と最適化に有用です。 A constructive theory for compressing knowledge while preserving semantic structure. Applicable to learning models, AI responses
25-day journey to master AI consulting! This repo features Jupyter notebooks covering AI architecture, ML, generative AI, cloud deployments, and MLOps to build your skills & portfolio.
This theory models a system that autonomously adjusts its operational parameters based on internal state transitions and external feedback. It provides a flexible control architecture useful for evolving AI agents, real-time optimization systems, and adaptive control networks.
This patent proposes a logic framework that enables contextual reasoning beyond fixed frames, integrating adaptive layers of interpretation for highly dynamic systems and meta-level AI control. 固定的文脈を超えた推論を可能とする論理枠組であり、高次適応やメタAI制御を支援します。