|
2681 | 2681 | ┗━━━━━━━━━━━━━┷━━━━━━━━━━━━━┷━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━┛
|
2682 | 2682 | </code></pre>
|
2683 | 2683 | <ul>
|
2684 |
| -<li><strong>Last result has a hierarchical index. <code class="python hljs"><span class="hljs-string">'<Sr>[<key_1>, <key_2>]'</span></code> returns the value.</strong></li> |
| 2684 | +<li><strong>Last result has a hierarchical index. Use <code class="python hljs"><span class="hljs-string">'<Sr>[<key_1>, <key_2>]'</span></code> to get the value.</strong></li> |
2685 | 2685 | </ul>
|
2686 | 2686 | <div><h3 id="dataframe">DataFrame</h3><p><strong>Table with labeled rows and columns.</strong></p><pre><code class="python language-python hljs"><span class="hljs-meta">>>> </span>DataFrame([[<span class="hljs-number">1</span>, <span class="hljs-number">2</span>], [<span class="hljs-number">3</span>, <span class="hljs-number">4</span>]], index=[<span class="hljs-string">'a'</span>, <span class="hljs-string">'b'</span>], columns=[<span class="hljs-string">'x'</span>, <span class="hljs-string">'y'</span>])
|
2687 | 2687 | x y
|
|
2871 | 2871 | covid = pd.read_csv(<span class="hljs-string">'https://covid.ourworldindata.org/data/owid-covid-data.csv'</span>,
|
2872 | 2872 | usecols=[<span class="hljs-string">'date'</span>, <span class="hljs-string">'total_cases'</span>])
|
2873 | 2873 | covid = covid.groupby(<span class="hljs-string">'date'</span>).sum()
|
2874 |
| - dow, gold, bitcoin = [scrape_yahoo(id_) <span class="hljs-keyword">for</span> id_ <span class="hljs-keyword">in</span> (<span class="hljs-string">'^DJI'</span>, <span class="hljs-string">'GC=F'</span>, <span class="hljs-string">'BTC-USD'</span>)] |
2875 |
| - dow.name, gold.name, bitcoin.name = <span class="hljs-string">'Dow Jones'</span>, <span class="hljs-string">'Gold'</span>, <span class="hljs-string">'Bitcoin'</span> |
2876 |
| - <span class="hljs-keyword">return</span> covid, dow, gold, bitcoin |
| 2874 | + dow, gold, btc = [scrape_yahoo(id_) <span class="hljs-keyword">for</span> id_ <span class="hljs-keyword">in</span> (<span class="hljs-string">'^DJI'</span>, <span class="hljs-string">'GC=F'</span>, <span class="hljs-string">'BTC-USD'</span>)] |
| 2875 | + dow.name, gold.name, btc.name = <span class="hljs-string">'Dow Jones'</span>, <span class="hljs-string">'Gold'</span>, <span class="hljs-string">'Bitcoin'</span> |
| 2876 | + <span class="hljs-keyword">return</span> covid, dow, gold, btc |
2877 | 2877 |
|
2878 |
| -<span class="hljs-function"><span class="hljs-keyword">def</span> <span class="hljs-title">wrangle_data</span><span class="hljs-params">(covid, dow, gold, bitcoin)</span>:</span> |
2879 |
| - df = pandas.concat([covid, dow, gold, bitcoin], axis=<span class="hljs-number">1</span>) |
| 2878 | +<span class="hljs-function"><span class="hljs-keyword">def</span> <span class="hljs-title">wrangle_data</span><span class="hljs-params">(covid, dow, gold, btc)</span>:</span> |
| 2879 | + df = pandas.concat([covid, dow, gold, btc], axis=<span class="hljs-number">1</span>) |
2880 | 2880 | df = df.loc[<span class="hljs-string">'2020-02-23'</span>:].iloc[:<span class="hljs-number">-2</span>]
|
2881 | 2881 | df = df.interpolate()
|
2882 | 2882 | df.iloc[:, <span class="hljs-number">1</span>:] = df.rolling(<span class="hljs-number">10</span>, min_periods=<span class="hljs-number">1</span>, center=<span class="hljs-keyword">True</span>).mean().iloc[:, <span class="hljs-number">1</span>:]
|
|
0 commit comments