@@ -394,7 +394,7 @@ def test_SdA(finetune_lr=0.1, pretraining_epochs=15,
394
394
c .append (pretraining_fns [i ](index = batch_index ,
395
395
corruption = corruption_levels [i ],
396
396
lr = pretrain_lr ))
397
- print ('Pre-training layer %i, epoch %d, cost %f' % (i , epoch , numpy .mean (c )))
397
+ print ('Pre-training layer %i, epoch %d, cost %f' % (i , epoch , numpy .mean (c , dtype = 'float64' )))
398
398
399
399
end_time = timeit .default_timer ()
400
400
@@ -442,7 +442,7 @@ def test_SdA(finetune_lr=0.1, pretraining_epochs=15,
442
442
443
443
if (iter + 1 ) % validation_frequency == 0 :
444
444
validation_losses = validate_model ()
445
- this_validation_loss = numpy .mean (validation_losses )
445
+ this_validation_loss = numpy .mean (validation_losses , dtype = 'float64' )
446
446
print ('epoch %i, minibatch %i/%i, validation error %f %%' %
447
447
(epoch , minibatch_index + 1 , n_train_batches ,
448
448
this_validation_loss * 100. ))
@@ -463,7 +463,7 @@ def test_SdA(finetune_lr=0.1, pretraining_epochs=15,
463
463
464
464
# test it on the test set
465
465
test_losses = test_model ()
466
- test_score = numpy .mean (test_losses )
466
+ test_score = numpy .mean (test_losses , dtype = 'float64' )
467
467
print ((' epoch %i, minibatch %i/%i, test error of '
468
468
'best model %f %%' ) %
469
469
(epoch , minibatch_index + 1 , n_train_batches ,
0 commit comments