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ABSTRACT

Figures and tables are key sources of information in many
scholarly documents. However, current academic search en-
gines do not make use of figures and tables when semanti-
cally parsing documents or presenting document summaries
to users. To facilitate these applications we develop an algo-
rithm that extracts figures, tables, and captions from docu-
ments called “PDFFigures 2.0.” Our proposed approach ana-
lyzes the structure of individual pages by detecting captions,
graphical elements, and chunks of body text, and then lo-
cates figures and tables by reasoning about the empty re-
gions within that text. To evaluate our work, we intro-
duce a new dataset of computer science papers, along with
ground truth labels for the locations of the figures, tables,
and captions within them. Our algorithm achieves impres-
sive results (94% precision at 90% recall) on this dataset
surpassing previous state of the art. Further, we show how
our framework was used to extract figures from a corpus of
over one million papers, and how the resulting extractions
were integrated into the user interface of a smart academic
search engine, Semantic Scholar (www.semanticscholar.org).
Finally, we present results of exploratory data analysis com-
pleted on the extracted figures as well as an extension of our
method for the task of section title extraction. We release
our dataset and code on our project webpage for enabling
future research (http://pdffigures2.allenai.org).
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1. INTRODUCTION

Traditional tools for organizing and presenting digital li-
braries only make use of the text of the documents they in-
dex. Focusing exclusively on text, however, comes at a price
because in many domains much of the important content is
contained within figures and tables. Especially in scholarly
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domains, authors frequently use figures and tables to com-
pare their work to previous work, to convey the quantitative
results of their experiments, or to provide graphics that help
readers understand their methods. Therefore parsing figures
and tables is a necessary component of any system that seeks
to gain a semantic understanding of such documents.

Tables and figures also have the potential to be used as
powerful document summarization tools. It is common to
get the gist of a paper by glancing through the figures!,
which often contain both the main results as well as visual
aids that outline the work being discussed. Being able to
extract these figures and present them to a user would be
an effective way to let users quickly get an overview of the
paper’s content. To this end, we introduce PDFFigures 2.0.
PDFFigures 2.0 takes as input computer science papers in
PDF format and outputs the figures, tables, and captions
contained within them.

Our work builds upon the PDFFigures algorithm [5]. The
approach used by [5] has high accuracy but was only tested
on papers from a narrow range of sources. In this work,
we improve upon that method to build a figure extractor
that is suitable for use as part of academic search engines
for computer science papers. To meet this goal we improve
upon the accuracy of PDFFigures [5] and, more importantly,
build an extractor that is effective across the entire range of
content in a digital library. This requires an approach that
is robust to the large number of possible formats and styles
papers might use. Particular challenges include handling
documents with widely differing spacing conventions, avoid-
ing false positives while maintaining the ability to extract
a broad range of possible captions, and extracting a highly
varied selection of figures and tables.

Our approach follows the same general structure used
in [5] (see Section 3) and employs data-driven heuristics
that leverage formatting conventions used consistently in
the computer science domain. Following a heuristic ap-
proach makes our method transparent and easy to mod-
ify [13], which we have found to be important for developing
an effective solution to this task.

While our focus is on extracting figures, our method also
produces a rich decomposition of the document and anal-
ysis of the text. In this paper we demonstrate how this
analysis can be leveraged for other extraction tasks, such as
identifying section titles. Section titles are important be-
cause they reveal the overall structure of the document, and
can be a crucial feature for upstream components analyzing

IThroughout this paper we use the term “figures” to refer to
both tables and figures along with their associated captions



body text. Section titles can also be used to identify which
section figures were introduced in, thereby providing some
additional context for interpreting extracted figures. We
evaluate our section title extraction method on a dataset of
over 50 papers and compare our results against prior work.

In order to evaluate PDFFigures 2.0 against a diverse set
of documents, we introduce a new dataset of over 325 com-
puter science papers along with ground truth labels for the
locations of figures, tables, and captions within them. We
also show how our method was used to extract figures from
over one million documents and integrated into the user in-
terface for Semantic Scholar [3], a smart academic search
engine for computer science papers. We conclude by using
this dataset to study how figure usage has evolved over time,
how figure usage relates to future citations, and how figure
usage differs between conference venues.

2. RELATED WORK

For a comprehensive survey of previous work in figure ex-
traction as well as relevant open source tools, please see [5].
In this section we review some recent developments in the
field as well as exciting applications of figure extraction.

A machine learning based approach to figure extraction
was recently proposed in [11]. Their method classifies the
graphical elements in a PDF as being part of a figure or
not. Elements that were classified as being part of a figure
were clustered to locate individual figures in the document.
Rather then working primarily with the graphical elements
in a document, our approach focuses on identifying body
text and then using layout analysis to locate the figures,
which allows our approach to not only extract a wide variety
of figures but also generalize to extracting tables.

The possibility of being able to semantically parse figures
is an exciting area of research, and the figure extraction
method of [5] has already demonstrated its ability to facili-
tate pioneering work in this area. In [12], researchers experi-
mented with an approach to extracting data from line plots.
Given a figure, their system uses a classifier to determine
whether the figure is a line plot. If the figure is determined
to be a line plot, a word recognition system is then used to
locate text in the plot and classify that text as being part
of an axis, a title, or a legend. Finally, heuristics based on
color were used to identify curves in the plot and match them
against the plot’s legend. Their work used PDFFigures [5]
to extract a large corpus of figures from papers published in
top computer science conferences. The figures were mined
to collect real world examples of line plots. Since PDFFig-
ures can additionally extract the text contained in vector
graphic based figures, these figures were also used to provide
ground truth labels for the word detection system. Another
recent project has similarly found that figures extracted by
PDFFigures can be used to generate large amounts of text
detection training data for a neural network [4].

Researchers in [14] introduced a novel framework for pars-
ing result figures in research papers. They used PDFFig-
ures [5] to extract figures from computer science papers
and subsequently used a classifier to determine the figure
type. For line plots composed of vector graphics, heuristics
were used to locate key elements of the charts, including the
axis, axis labels, numeric scales, and legend. Apprentice-
ship learning was then used to train a model to identify the
lines, and thus the data, contained within the plot. In all
these cases PDFFigures provided the critical building block

needed for building tools that are effective on real world
figures and papers.

PDFFigures [5] has also been used as a component of
PDFMEF, a knowledge extraction framework that extracts
a wide variety of entities and semantic information from
scholarly documents [15]. In PDFMEF, PDFFigures was
used to add figures and tables to the elements PDFMEF is
capable of extracting. The authors remarked that PDFFig-
ures is notable for its accuracy and its ability to extract both
figures and tables, and concluded by stating “...it[PDFFigures]
is arguably one of the best open source figure/table extrac-
tion tools.”

These projects suggest that the ability to extract figures
from arbitrary documents is extremely valuable. With PDF-
Figures 2.0, we hope to provide a higher quality, more robust
tool for researchers wishing to use figures in their work.

The problem of locating section titles within documents
has also received attention from researchers, and is addressed
in systems such as ParsCit [6], Grobid [8] and SectLabel [9].
All these approaches use machine learning to classify lines of
text as being a section title or not. However, we have found
that exploiting some natural properties of section titles, such
as their use of salient fonts and their location relative to the
rest of the document’s text, makes heuristic approaches very
effective for this task.

3. APPROACH OF PDFFIGURES [5]

Since our work builds upon PDFFigures [5], we review the
general strategy employed by [5] in this section. The ap-
proach is to focus primarily on identifying the captions and
the body text of a document, since these elements are often
the easiest to detect in scholarly articles. Once the captions
and body text have been identified areas containing figures
can be found by locating rectangular regions of the docu-
ment that are adjacent to captions and do not contain body
text. PDFFigures has three phases: Caption Detection, Re-
gion Identification, and Figure Assignment.

Caption Detection.

This phase of the algorithm identifies words that mark
the beginning of captions within the document. Text is ex-
tracted from the document using Poppler [2], and a keyword
search is used to identify phrases that are likely to start a
caption. False positives are then removed using a consis-
tency assumption: that authors have labelled their figures in
a consistent manner as is required by most academic venues.

If the first pass yields multiple phrases referring to the
same figure, for example, two phrases of the form “Figure
17, it is assumed that all but one of those phrases is a false
positive. If such false positives are detected, an attempt is
made to remove them by applying a “filter” that removes
all phrases that do not follow a particular formatting con-
vention. Filters are only applied if they do not remove all
phrases referring to a particular figure. Filters include (I):
Select only phrases that end with a period. (II): Select only
phrases that end with a semicolon. (III): Select only phrases
that have bold font. (IV): Select only phrases that have italic
font. (V): Select only phrases that have a different font size
than the words that follow them. Filters are iteratively ap-
plied until no false positives are left. If false positives remain
but no filter can be applied they fall back on selecting only
phrases that start paragraphs, as judged by Poppler’s text
extraction system.



Figure 1: A document page (left panel, from [Scholz
et al.,, ICML 2014]) decomposed into a set of clas-
sified regions (right panel). Body text regions are
shown as filled boxes, captions and figure text re-
gions as box outlines, and graphical element regions
as dashed box outlines.

Region Identification.

Region identification decomposes document pages into re-
gions, each one labelled as either caption, graphical element,
body text, or figure text. Caption regions are built by start-
ing from the caption phrases found in the prior step, and
combining them with subsequent lines of text. The rest of
the text in the document is grouped into paragraphs using
Poppler’s paragraph grouping mechanism. Paragraphs that
are either too large or aligned to the left margin of a column
are classified as body text, otherwise they are classified as
figure text.

Page headers and page numbers are handled as special
cases. PDFFigures checks if pages in the document are con-
sistently headed by the same phrase, and if so marks those
phrases as body text. Likewise page numbers are detected
by checking if all pages end with a number, and if so marking
those numbers as body text.

Finally, the graphical elements of the document are lo-
cated. To do this each page is rendered as a 2D image using
a customized PDF renderer that ignores text. The bounding
boxes of the connected components in the resulting image
are then used as graphical regions of the document. An
example of such a decomposition is shown in Figure 1.

Figure Assignment.

The last step is to assign each caption a region of the doc-
ument containing the figure it refers to. First, up to four
“proposal” regions are generated for each caption. Proposal
regions are built by generating a rectangular region adjacent
to each side of the caption, and then maximally expanding
those regions as long as they do not overflow the page mar-
gin, overlap with body text, or overlap a caption. This is
shown in Figure 2. For two-column papers regions are con-
strained to not cross the center of the page unless the caption
itself spans both columns.

Next, a single proposed figure region is selected for each
caption. To do this a scoring function is used to rate each
proposed region based on how likely it is to contain a figure.
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Figure 2: Generating possible figure regions for a
caption. For each caption (center blue box), up
to four regions are generated as possible figures by
maximally expanding boxes that are adjacent to one
side of the caption. Page from [Cuong et al., NIPS
2013]

The scoring function gives higher scores to regions that are
large and contain graphical elements. To ensure captions
are not assigned regions that overlap, they iterate through
every possible permutation of how figure regions could be
matched to captions. Each permutation is scored based on
the sum of the scores of the proposed regions it includes,
with regions that overlap given a score of 0. The highest
scoring permutation is then selected as the final set of figure
regions to return.

An additional complication comes from cases where fig-
ures are immediately adjacent, so that they are not sep-
arated by any intervening body text or captions. In these
cases, proposal regions might get overly expanded and there-
fore contain multiple figures. To handle these cases, when
iterating through permutations, if two proposal regions over-
lap an attempt is made to split them by detecting a central
band of whitespace that separates them. An example of such
a figure can be found in Figure 4, second row right column.

4. PROPOSED APPROACH

Our approach builds upon [5] by making crucial updates
to its important components. Most of the updates are de-
signed to allow PDFFigures 2.0 to generalize across a wider
variety of paper formats. The PDFBox [1] library is used
for parsing PDFs.

4.1 Caption Detection

We improve the keyword search of [5] that identifies phrases
that might start captions to be effective against more kinds
of papers by using a considerably expanded set of keywords.
However, naively increasing the number of keywords also
increases the number of false positives for each paper. We
resolve this problem by adding a number of additional filters
to the ones used in [5], such as (I): Select phrases that are all
caps. (II): Select phrases that are abbreviated. (III): Select
phrases that occupy a single line. (IV): Select phrases that
do not use the most commonly used font in the document.
(V): Select phrases that are left aligned to the text beneath
them. The last filter serves as a general purpose filter for
detecting indented paragraphs or bullet points that start by
mentioning a figure.

4.2 Region Identification

Our region identification method decomposes each page
into caption, body text, figure text and graphical regions as



done in [5].

4.2.1 Caption Region Identification

We use a specialized procedure to identify complete cap-
tions once the starting line of that caption has been identi-
fied. To make our approach robust to the document’s choice
of line spacing, we compute the median space between lines
in the document. Then, for each mention, we construct
the caption by adding lines following the mention that are
less than the document’s median line space away from each
other. This works well in many cases, but can fail on docu-
ments where captions have been tightly packed against the
following text. To add robustness to this problem, we addi-
tionally check to make sure new lines have a similar justifi-
cation to the lines accumulated so far. We also avoid adding
lines of text that overlap a graphic region, or lines of text
that are of a different font than the previous lines.

4.2.2 Text Classification

Text classification is the process of determining whether
blocks of text on each page should be labelled as body text
or figure text. Text classification is made difficult by the
wide variety of ways text can appear in figures and was a
relatively large source of error in PDFFigures [5]. We de-
velop a new set of heuristics to achieve high performance
on this task across many kinds of documents. We lever-
age the insight that the majority of text in a document is
body text, and that body text in a document will have a
consistent format throughout the document. As a result,
text that is formatted in an anomalous way can be assumed
to be figure text. We determine the most common font and
font size used in the document, the most common line width
used, the most common distance between lines and distance
between words, and the most common left margins. These
statistics are then used in the following heuristics:

1. Graphic Overlap: Text that overlaps a graphic region
is classified as figure text.

2. Vertical Text: Text that has a vertical orientation is
marked as figure text.

3. Wide-Spaced Text: Text blocks with above median
space between its words are marked as figure text. This
heuristic is effective for detecting text in tables.

4. Line Width: Text blocks that are several lines long
and of the same width as the most commonly used
line width in a document are classified as document
text.

5. Small Font: Text that is smaller than the most com-
mon font size is classified as figure text.

6. Section Titles: Text that is aligned to a margin or
centered, starts with a number or is capitalized, and is
of a non-standard font or font size, is marked as body
text. This heuristic serves to detect section titles, and
forms the basis of our section title extraction method
(please see Section 7).

7. Margin Alignment: Text that is aligned to a left mar-
gin is classified as body text and any remaining text is
classified as figure text.

e The dependency parameter © is analogous to the
Gaussian precision matrix ¥ ! in a Gaussian MRF.

e If © = 0, then the PMRF reduces to an independent
multivariate Poisson distribution.

o Negative dependencies can help model sparse data
(i.e. data with many 0’s) because the density can be
concentrated on the axes as seen seen in Fig. 2 (left).
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Figure 2: The densities of three 2D Poisson MRFs that
show possible dependency structures between two words.

Figure 3: Using clustering to identify figure regions.
In this page from [Inouye et al., ICML 2014] the
bullet points were mistakenly misclassified as figure
text (box outlines). However clustering elements
around the Figure’s graphics ensures the bullets are
not included in the proposed figure region (dashed
line).

Generalizing to a wide variety of PDFs also requires a
more general page header detection method. We have to
handle page headers with inconsistent text, for example page
headers that alternate between stating the paper’s title and
the authors’ names, and multiline page headers. PDFFig-
ures 2.0 scans through the first several lines of text on each
page. If these lines start above any other text by a suffi-
ciently large margin and appear at the same height on each
page they are marked as body text.

4.2.3 Graphical Region ldentification

PDFFigures 2.0 locates graphical regions of the document
by directly parsing the PDF'. Internally PDFs encode graph-
ical elements through the use of various “operators” that
draw elements on the page. Operators can be used to draw
shapes and curves of different colors or render images em-
bedded in the PDF onto the page. PDFFigures 2.0 scans
the PDF and, for each such operator, records the bounding
box of the element that operator would draw. To achieve
this we make use of functionality introduced in PDFBox 2.0
that provides high level descriptors of the graphical elements
being drawn by each operator. The bounding boxes found
across the entire page are then clustered by merging nearby
bounding boxes, and the resulting merged boxes are used
as graphical regions. This approach is much faster than the
one used in [5] since it does not require rendering the PDF
to a bitmap. This is one of the primary reasons PDFFigures
2.0 is faster than PDFFigures [5] when it comes to locating
figures (see Section 6.2).

4.3 Figure Assignment

The final step in our algorithm is to determine the figure
regions to return. Possible figure regions are generated for
each caption as described in Section 3 (Region Identifica-
tion). Taking inspiration from [10], where it was found that
clustering elements around large graphical regions was an
effective way to detect figures, we add a clustering subcom-
ponent to prune the proposed regions. For each proposed



figure region, we check to see if a large graphical region is
contained within it. If such a region is found, we cluster
elements around that graphical region and then remove ele-
ments that were not in the cluster. The motivation for this
technique is that if a prominent graphical element, like an
embedded image or a chart, is part of a figure it is usually
the main focus of that figure. Therefore text that is not
near that element is unlikely to be part of that figure. This
method helps us to be robust to text that was misclassified,
for an example see Figure 3.

We make two additional improvements. First, we found
that removing proposed figure regions that partially inter-
sect a word in the document was an effective way to re-
move many incorrect proposals. Second, the region splitting
criteria was adjusted to trigger more frequently and prefer
splitting regions across the largest band of whitespace rather
than the most central band. This allows PDFFigures 2.0 to
extract figures that are adjacent to each other in more cases,
but also introduces false positives where figures containing
whitespace were incorrectly split between nearby captions.
We resolve this issue by adjusting our region scoring func-
tion to downweight figure regions that were produced using
this new splitting procedure.

S. DATASET

We evaluate our approach on two datasets of computer sci-
ence papers. The first, which we call the “CS-150" dataset,
consists of 150 papers from well-known computer science
conferences, introduced by [5]. It is composed of 50 pa-
pers from NIPS 2008-2013, 50 from ICML 2009-2014, and
50 from AAAT 2009-2014 with 10 papers selected at random
from each conference and year. There are 458 labelled fig-
ures and 191 labelled tables. This dataset contains papers
that are typical of what researchers read, but because it was
only drawn from three conferences it does not capture the
full range of styles computer science papers have. In order
to test our method on a more diverse set of documents, we
gather another dataset by randomly sampling papers used
by Semantic Scholar [3] that have at least 9 citations and
were published after the year 1999. This dataset will be re-
ferred to as the “CS-Large” dataset. We used citation and
year restrictions to make this data sample more represen-
tative of the kinds of documents researchers encounter in
search engines. For these sampled papers, we only annotate
(and test on) half the pages selected at random, which al-
lowed us to label twice as many papers. We only label up to
9 pages per paper to ensure longer papers do not contribute
an overly large portion of the labelled figures and tables.
In total, we annotate 346 papers that originate from over
200 different venues. There are 952 labelled figures and 282
labelled tables. Both datasets were annotated by having an-
notators mark bounding regions for each caption, figure and
table using an image annotation tool. These regions were
then cropped to the foreground pixels of the page they were
marked on, and the cropped regions were used as ground
truth labels for evaluation.

6. EXPERIMENTAL RESULTS

6.1 Figure Extraction

We evaluate PDFFigures 2.0 on both datasets and com-
pare its performance to PDFFigures [5], and a figure extrac-

Dataset Extractor P R F1

CS-150 PDFFigures 2.0 (Ours) | 0.980 | 0.961 | 0.970
PDFFigures [5] 0.961 | 0.911 | 0.935
PDFPlots [10] 0.624 | 0.500 | 0.555

CS-Large PDFFigures 2.0 (Ours) | 0.936 | 0.897 | 0.916
PDFFigures [5] 0.797 | 0.693 | 0.741
PDFPlots [10] 0.678 | 0.546 | 0.605

Table 1: Precision (P) and recall (R) on figure ex-
traction.

Dataset Extractor P R F1

CS-150 PDFFigures 2.0 (Ours) | 0.979 | 0.963 | 0.971
PDFFigures [5] 0.962 | 0.921 | 0.941
PDFPlots [10] 0.429 | 0.363 | 0.393

CS-Large PDFFigures 2.0 (Ours) | 0.932 | 0.918 | 0.925
PDFFigures [5] 0.804 | 0.563 | 0.663
PDFPlots [10] 0.373 | 0.317 | 0.343

Table 2: Precision (P) and recall (R) on table ex-
traction.

tion method developed for the High Energy Physics domain
from [10]. Some of the modifications made to caption detec-
tion (see Section 4.1) were ported to PDFFigures, otherwise
PDFFigures had a greatly reduced score due to failing to
detect certain kinds of captions. Each extractor is expected
to return a set of figures for each document. Each returned
figure is expected to include a page number, a bounding box
for both the figure and its caption, the identifier of that fig-
ure (e.g., “Figure 1” or “Table 3”), and optionally the caption
text.

We follow the evaluation scheme of [5]. Extracted figures
with identifiers that did not exist in the hand built labels,
or with incorrect page numbers, are considered incorrect.
Otherwise a figure is judged by comparing its bounding box
against the ground truth using the overlap score criterion
from [7]. A bounding box’s score is its area of intersection
with the ground truth bounding box divided by its area of
union with the ground truth bounding box. We consider a
bounding box correct if its overlap score exceeds a threshold
of 0.80, otherwise it is marked as incorrect.

Captions are evaluated by comparing the returned bound-
ing boxes with the ground truth using the same overlap cri-
terion, although we also consider captions correct if the text
extracted from the ground truth region matches the text
returned by the extractor. We use this dual criterion for
captions because small differences in the bounding boxes of
text extracted from the PDF can sometimes cause correct
extractions to be judged as errors by the overlap criterion.
Figure regions are usually larger and contain graphical ele-
ments, and so are not affected by this problem. We consider
an extraction to be correct if both the caption and figure
region are correct.

Our approach achieves the highest F1 scores on each dataset
for both figures and tables. Relative to [5], PDFFigures 2.0
achieves a 3% absolute gain in F1 on the CS-150 dataset.
On the more diverse and challenging CS-Large dataset, we
see a much larger gain of over 26.2%. The algorithm by [10],
although achieving high results in the domain of high energy
physics, did not generalize well to the domain of computer
science papers.



Related Work
There has been a fair amount of computational work on iden-
tifying linguistic metaphors, but considerably less on finding
conceptual metaphors. Most such work relies strongly on
predefined semantic and domain knowledge. We give here
a short summary of the most relevant previous work.

Birke and Sarkar (2006) approach the problem as a clas-
sical word sense disambiguation (WSD) task. They reduce
nonliteral language recognition to WSD by considering lit-
eral and nonliteral usages to be different senses of a single
word, and adapting an existing similarity-based word-sense
disambiguation method to the task of separating verbs oc-
currences into literal and nonliteral usages.

Turney et al. (2011) identify metaphorical phrases by as-
suming that these phrases will consist of both a "concrete”
term and an "abstract” term. In their work they derive an al-
gorithm to define the abstractness of a term, and then use
this algorithm to contrast the abstractness of adjective-noun
phrases. The phrases where the abstractness of the adjective
differs from the abstractness of the noun by a
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Note that the only manually-created background knowl-
edge sources used are Wordnet and the number of defini-
tions of words in Wiktionary; these are used in very circum-
scnbed ways in the system, as described below. Other than
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5 Experiments

We report preliminary experimental results on six, varying multiclass UCI datasets.

The first set of experiments were aimed at delermining
overall of our new a

astandard implementation M1 of AdaBoost. Ml withC4.5
as weak learner, and the Boostexter implementation MH
of AdaBoost.MH using stumps [20], with the adaptive
algorithm described in Section 4, which we call New
method, using a naive greedy tree-searching algorithm
Greedy for weak-learner. The size of trees was chosen
to be of the same order as the tree sizes used by M1. Test
errors after 500 rounds of boosting are plotted in Figure 2.
The performance is comparable with M1 and far better
than MH (understandably since stumps are far weaker than
trees), even though our weak-learner is very naive com-
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[Figure T: The Anytime A* algorithm.]

inserted into the OPEN queue with key e(s), orif it was al-

32 Suboptimality Bound

Our algorithm ANA* provides a suboptimality bound of the
current-best solution that gradually decreases as the algo-
rithm progresses. Each time a state s is selected for expan-
sion in line 2 of IMPROVESOLUTION, its e(s)-value bounds
the suboptimality of the current-best solution. We prove the
theorem below. We denote by G the cost of the optimal so-
lution, s0 G/G* is the true suboptimality of the current-best
solution (recall that G is the cost of the current solution).
Further, we denote by g*(s) = ¢* (syan.s) the cost of the op-
timal path between the start state sy and s.

Lemma: If the optimal solution has not yet been found,
there must be a state s € OPEN that is part of the optimal
solution and whose g-value is optimal, i.e. g(s) = g* (s).

Proof: Initially. s € OPEN is part of the optimal solution
and g(syan) = & (swan) = 0. At each iteration a state s from
OPEN is expanded. s is cither part of the optimal solution
and g(s) is optimal, or not. In the latter case, the state with
the above property remains in OPEN (its g-value is optimal
and cannot be decreased). In the former case, s must have
a successor s’ that is part of the optimal solution. The suc-
cessor’s updated g-value is optimal since edge (s,s') is part
of the optimal solution and g(s') = g(s) +c(s.'). This con-
tinues until the goal state is deaueued with optimal 2-value

Correct extraction of a figure composed mostly
of text [Berg et al., AAAI 2011]

A Fuliosamd-€F-Pappa:

fac0)

Proposition 3. Suppose that for all (x,y) € D, there exists a k € R such that

Error caused by mistaking a page header as part of the
figure [Julius et al., HSCC 2009]
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Figure 7. Deviation plots on the S&P 500 index from 1960~2005
for Garch(N) (circle), Garch(T) (diamond), SV(N) (x), SV(T)

T T

pared to C4.5.

We next investigated how each algorithm performs with
less powerful weak-classifiers, namely, decision trees whose size has been sharply limited to various
pre-specified limits. Figure 1(a) shows test-error plotted as a function of tree size. As predicted by

Correct extraction of a figure embedded in
text from [Mukherjee et al., NIPS 2010]

Collective Graphical Models

Table T. Comparison of GIbbs vs. MAP: seconds to achieve]
the same relative error compared with reference solution.

L 9 16 25 36 19
MAPTIME | 09 19 9.7 172
Gisss TIME | 1618 251.6 768.1 11155

L-16

Relative error
Relative error

Relative error
Relative error

‘Seconds

Figure 5. Relative error of learned parameters versus run-
ning time for different EM algorithms (MAP and MCEM
100 EM iterations, SAEM: 600 EM iterations, M = 1000).

lem size increases. SAEM has better long-term con-
vergence behavior than MCEM, but MAP-EM finds
parameters that are within 1% relative error of 1.

Correct extraction of a table adjacent to a
figure [Sheldon et al., ICML 2013]

procedure is able to produce very diverse samples of
good quality from a trained CAE-2 and that properly
taking into account the Jacobian is critical. Figure 2
shows typical first layer weights (filters) of the CAE-2
used to generate faces in Figure 1.

Tgure

To get a more objective quantitative measure of the
quality of the samples, we resort to a procedure pro-
posed in Breuleux et al. (2011) that can be applied
to compare arbitrary sample generators. It consists in
measuring the log-likelihood of a test set (not used to

log-likelihoods.

Table 1. Log-Likelihoods from

using 10000 samples from each
DBN-2

TFD 1908.80 + 65.¢

MNIST | 137.89 + 2.11

5.2. Evaluating the invari
criterion

Our next series of experimen
of the training criterion prop

Susing Gaussian kernels whe
on a validation set

Error caused by including extra text in
a caption [Rifai et al., ICML 2012]

A Fast and Exact Energy

Algorithm for Cycle MRFs

minimization problem, whose tightness depends on the
choice of subproblems in the decomposition.

For rich structured models we usually have to add
cycle subproblems to the decomposition to tighten the
underlying LP relaxation. In such a scenario we need
a cycle solver in three situations:

To evaluate the criterion in selecting cycles to
tighten the relaxation, such as the criterion in
(Sontag et al., 2008).

e

To compute subgradients for optimizing the dual,
such as in (Komodakis et al., 2011).

¢ messages for optimizing the dual
in MSD (Werner,
kola, 2007) and

To comps
(Wang & Koller, 2013), such
2007), MPLP (Globerson & Ja
TRW-S (Kolmogorov, 2006).

set ol subproblems containing v
energy function of subproblem ¢
potential of subproblem ¢ on variable X
min-marginal of subproblem ¢ on variable
average of M over ¢ € J(X
average of “normalized” MY over ¢ € J (X
upper bound approximation of M5

i s of My (and M%)
subset of Val(X) with high priority (13)

_ Seeqoo Mk
My = =7

updates monotonically increase the dual objective (9).
To compute the dual updates we need min-marginals
from each subproblem. Table 2 summarizes notations
used in this section.

is the average min-marginal. The

Error caused by mistaking table text as
body text [Wang et al., ICML 2013]

FError caused by inability to separate a 3-way figure layout
[Chen et al., ICML 2010]

Figure 4: Qualitative results. Figures that our system extracted are shown in green, captions are shown
in blue, and, in the case of errors, correct extractions are marked in red. The top two rows show correct
extractions, the third row shows incorrect extractions, and the last row shows figures our system failed to
extract.



Dataset Extractor Locate | Render

CS-150 PDFFigures 2.0 (Ours) | 0.21 2.52
PDFFigures [5] 0.84 0.93
PDFFigures 2.0 (Ours) | 0.27 1.84

CS-Large 5B FFigures j) 1.19 1.23

Table 3: Mean number of seconds required to lo-
cate, or to both locate and render, the figures in a
paper. Our approach is considerably faster at locat-
ing figures, but slower when required to render the
extracted regions as images.

Dataset Source of Errors Count | Percent
Text Extraction 10 0.46

C8-150 Caption Detection | 2 0.09
Caption Extraction | 2 0.09
Text Classification | 2 0.09
Figure Assignment | 2 0.09
Cropping Error 2 0.09
Other 2 0.09

CS-Large Text Extraction 32 0.29
Caption Detection | 6 0.06
Caption Extraction | 15 0.14
Text Classification | 29 0.26
Figure Assignment | 14 0.13
Cropping Error 12 0.11
Other 1 0.01

Table 4: Error analysis of our approach. Inaccu-
racies when extracting text was a major source of
error, followed by errors in text classification.

Figure 4 shows qualitative results from our method. PDF-
Figures 2.0 produces very clean extractions in most cases.
Errors tend to emerge in papers where figures are arranged
in complex layouts, or are caused by difficulty correctly clas-
sifying blocks of text that do not match the usual flow of
body text, such as equations, page headers, or text inside
figures.

6.2 Runtime Analytics

We measure our method’s runtime performance on both
datasets and compare to [5], as shown in Table 3. We mea-
sure the time it takes to return the location of the figures
in a document, and also the time it takes to both locate the
figures and save them as separate image files>. PDFFigures
2.0 is considerably faster at locating figure regions. However,
rendering the figures using PDFBox [1] proved to be slower
then rendering them using Poppler [2], the PDF rendering
engine used by [5]. In the future, we might consider using a
different library to complete the rendering step in order to
remove this performance gap.

6.3 Error Analysis

We perform an error analysis to assess the performance
of individual steps of our approach. The analysis is listed
in Table 4. We categorize errors (both false positives and
false negatives) into one of following six categories. Text ex-
traction errors, referring to errors caused by text not being
extracted correctly from the PDF. Caption detection errors,

2Experiments were run on a single thread on a Macintosh
OS X 10.10 with a 2.5GHz Intel core i7 processor.

caused by failing to locate captions. Caption extraction er-
rors, where a caption was correctly located but had incorrect
text. Text classification errors, due to incorrectly classifying
body text as figure text or vice versa. Figure assignment
errors, caused by generating or selecting incorrect proposal
regions during the figure assignment step. Or cropping er-
rors, meaning the returned figure region was approximately
correct, but had not been clipped in quite the same manner
as the ground truth region. Cropping errors were often due
to minor errors in the bounding boxes extracted for text or
graphical elements.

Text extraction was a signfiicant source of error, some
PDFs that appear correct in PDF viewers yield erroneous
text when parsed programmatically. In many cases, other
PDF parsing tools beside PDFBox [1], such as Poppler [2],
also failed to parse these PDFs, implying these errors stem
from how the text was encoded and would be hard to avoid.
The next largest source of error was region classification,
many errors caused by misclassifying text in page headers,
bullet points, equations, or text inside text heavy figures.

7. SECTION TITLE EXTRACTION

While our focus is on extracting figures, the document
decomposition produced by our method and our techniques
for detecting anomalous text can be valuable when extract-
ing other important elements from documents as well. In
this section, we demonstrate how our approach can be ex-
tended for extracting section titles. A particular motiva-
tion for this task is that section titles can provide additional
context when interpreting figures. We have also found open
source tools like ParsCit [6] and Grobid [8] to be less effective
for this task on our dataset.

7.1 Proposed Approach

Our approach detects lines of text that (I): Are either all
caps, or have a font different than the most common font
in the document, or are larger than the average font size in
the document. (II): Have a uniform font and font size. (III):
Have a larger than average amount of space between itself
and the line above it. (IV): Have at least one line of text be-
low it. (V): Are centered or left aligned to a column. (VI):
Start with a number or are upper case. We remove lines
that appear to be part of an equation by removing lines
containing many non-alphabetic characters, and we remove
lines that appear to be part of a list (ex. “Theorem 1:”) by
removing lines that end in a number. If any of the remain-
ing lines are consecutively ordered, we have to determine
whether they are part of a single, multi-line title or if the
following line(s) are a separate section title. Similar to our
method of locating captions (Section 4.1), we resolve this
problem using the line’s justification. If the font and justifi-
cation of the second line matches the first line the lines are
labelled as a multi-line section title, otherwise they are la-
belled as separate section titles. This phase is run only after
the figures and tables have been extracted, since figures and
tables often have their own titles which may produce false
positives.

7.2 Results

An evaluation of our section title extraction approach was
completed on 65 documents, 26 sampled from CS-150 and
39 sampled from CS-Large. For comparison we use the well
known PDF parsing program Grobid [8]. We experimented



Extractor Precision | Recall F1

PDFFigures 2.0 (Ours) 0.946 0.975 | 0.960
Grobid 0.701 0.818 | 0.755
Grobid, Numbered Only 0.934 0.670 | 0.781

Table 5: Precision-recall scores of Grobid and PDF-
Figures 2.0 for section title extraction.

with using all the sections extracted by Grobid, or just the
sections that began with a number. We additionally filter
out section titles produced by Grobid that were of length
one or contained no alphabetic characters. The output of
both algorithms was compared against manually extracted
section titles. Our results are shown in Table 5. PDFFigures
2.0 shows considerably better performance on this dataset.
Many of Grobid’s errors are due to extracting bold lines of
text that are not section titles, chunking section titles with
the line beneath them, or extracting text within a figure or
table as a section title. If we only use numbered sections,
Grobid’s precision becomes much better, although chunking
errors still reduce precision while recall drops since many
PDFs in our sample do not number their sections. False
positives are the primary source of error in our algorithm
and are often due to extracting bold lines of text that begin
new paragraphs, but were not annotated as section titles.

8. INTEGRATING PDFFIGURES 2.0 INTO
A DIGITAL LIBRARY

PDFFigures 2.0 has been featured in a smart online search
engine for scholarly computer science documents, Semantic
Scholar (www.semanticscholar.org). Semantic Scholar uses
state of the art techniques in natural language processing
to add semantics to scientific literature search. Integra-
tion with a complex, distributed document processing sys-
tem such as Semantic Scholar requires that our approach is
both scalable and easy to integrate into existing codebases.
To achieve this goal, PDFFigures 2.0 was implemented in
Scala so that it can be easily integrated into JVM based
distributed processing environments. We also ensure that
PDFFigures 2.0 can be timed out and interrupted if it stalls
when parsing a PDF. Using the Apache Spark distributed
framework [16], the extractor was run on over one million
PDFs. We were able to mine figures from about 96% of
these PDF's without errors. In total, 5 million figures and
1.4 million tables were extracted.

The extracted figures are used as part of the user inter-
face of Semantic Scholar. Semantic Scholar features a sum-
mary page for each paper, which includes content such as the
paper abstract, key phrases, the citations to and from the
paper along with highlighted key citations. The extracted
figures are shown to the user as thumbnails beneath the ab-
stract. By clicking on an individual figure, users can view it
at full scale, or flip through the other figures in the paper.
Extracted captions are shown below each figure to provide
further context. Figure 5 provides a snapshot of the Seman-
tic Scholar UI. We expect the ability to preview figures in
this manner to be especially helpful for mobile users. While
it is normally very difficult to view figures on a mobile de-
vice, the Semantic Scholar mobile site presents users with a
list of the figures in each paper that can be tapped on to be
viewed in full screen.

Statistic Correlation with Citations
Number of Figures 0.0332
Number of Tables 0.0634
Number of Figures and Tables 0.0535
Mean Figure Caption Length 0.0471
Mean Table Caption Length 0.0617
Mean Caption Length 0.0627

Table 6: Spearman rank correlation between figure
usage and citations normalized by year and venue.
‘We can observe a slight correspondence between us-
ing figures and including longer captions with ci-
tations. All values have two sided p-values with
p < 10710,

9. EXPLORING FIGURE & TABLE USAGE

As a result of building a database of over 5 million figures
(Section 8) we acquired a large collection of rich figure meta-
data. This metadata gave us an opportunity to investigate
figure usage in computer science literature. In this section,
we present some of the insights we were able to derive. Note
that our analysis is limited to open source documents.

9.1 Figure Usage Over Time

We investigated how the usage of figures has changed over
time. A plot of the mean number of figures and tables used
in papers during different years can be found in Figure 6.
We found both figure and table usage has increased over
time, with figure usage undergoing a specially large increase
during the years of 1995-2005. The increase in the usage of
figures over time provides some empirical evidence that fig-
ures have become an increasingly important part of the com-
puter science literature. We also examine how the length of
captions has changed over time. The plot in Figure 7 shows
that captions tend to be longer in more recent papers, which
also suggests authors have devoted more space to presenting
and explaining figures in recent years.

9.2 Figures and Citations

We examined how figure usage correlates with the number
of citations a paper receives. To control for factors such as
time of publication, page count, general topic, and confer-
ence prestige, we normalize each paper’s citations by confer-
ence. That is, we subtract from each paper’s citation count
the mean number of citations given to papers that were pub-
lished in the same conference and year. To ensure accurate
normalization, we only make use of a paper if there were 30
other papers from the same conference and year. We then
compute the Spearman rank correlation between number of
figures used and mean caption length with citations. Our
results are shown in Table 6. We found that both number
of tables and number of figures has a small correlation with
the number of citations a paper receives, and that this trend
is stronger for tables than it is for figures. Caption length
also has a correlation with citations, again with a stronger
effect towards table caption length. Although these values
are small, they are statistically significant and are sufficient
to indicate a link between citations and figure usage. One
possible explanation is that papers with extensive empiri-
cal results, which often leads to higher figure usage, tend to
get cited more frequently. Another plausible explanation for
this correlation is that leading researchers and authors tend



T Combining Retrieval, Static %

L C' 2 https://www.semanticscholar.org/paper/478b4a5123bd5fda98bb35e6317d7f... =

Combining Retrieval, Statistics, and Inference to Answer

Elementary Science Questions

Peter Clark, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Oyvind Tafjord, Peter Turney, Daniel
Khashabi - 2015

ViewPDF (g Cite B Save

Abstract Table 1 Examples of knowledge tables

What capabilities are required for an Al system to pass standard 4th Grade Science Tests? Previous
work has examined the use of Markov Logic Networks (MLNSs) to represent the requisite background
knowledge and interpret test questions, but did not improve upon an information retrieval (IR) baseline.
In this paper, we describe an alternative approach that operates at three levels of representation and
reasoning: information retrieval, corpus statistics, and simple inference over a semi-automatically
constructed knowledge base, to achieve substantially improved results. We evaluate the methods on
six years of unseen, unedited exam questions from the NY Regents Science Exam (using only non-
diagram, multiple choice questions), and show that our overall system's score is 71.3%, an
improvement of 23.8% (absolute) over the MLN-based method described in previous work. We
conclude with a detailed analysis, illustrating the complementary strengths of each method in the
ensemble. Our datasets are being released to enable further research.
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Figure 5: User interface with the extracted figures and tables from Semantic Scholar. Figures are shown as
thumbnails below the abstract (left). Users can select a figure to see the full image and its caption (right).
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Tables Per

Conference

Paper
Empirical Methods on 3.86
Natural Language Processing (EMNLP) ’
Conference of Evaluation 377
Information Access Technologies (NTCIR) '
International Joint Conference on 3,50

Natural Language Processing (IJCNLP)
Text Analysis Conference (TAC) 3.46

Automatic Speech Recognition 344
and Understanding Workshop (ASRU) )

Table 7: Conferences with the most tables in each
paper. This category is dominated by natural lan-
guage processing conferences.

Figures Per

Conference

Paper
International Meshing Roundtable (IMR) 10.23
International Conference on 9.39
Mobile Systems (MOBISYS) )
Symposium on High-Performance 8.92

Computer Architecture (HPCA)
Internet Measurement Conference (IMC) 8.90
Furopean Conference 8.06
on Computer Systems (EuroSys) )

Table 8: Conferences with the most figures in each
paper. Many system conferences can be observed.

to both use more figures and accrue more future citations.

9.3 Figures by Conferences

Finally, we investigate how figure and table usage varies
between conferences. We compute the mean number of fig-
ures and tables used by papers in different conference venues,
only including venues for which we had at least 150 docu-
ments. The venues with the highest table usage can be found
in Table 7, and the venues with the highest figure usage in
Table 8. In our dataset, we found that natural language pro-
cessing conferences dominate the top spots for using tables,
an indicator that empirical results and making comparisons
has been especially important in that field. The conferences
where figures were most frequently used include many sys-
tem conferences, which tend to both have higher page limits
and make frequent use of figures to illustrate circuit or hard-
ware layouts.

10. CONCLUSION

In this paper we considered the challenging problem of
developing a scalable figure extraction method that is ro-
bust enough to be used across the entire range of content in
a digital library. Our contributions include a set of widely
applicable text classification heuristics, a clustering mecha-
nism for detecting figure regions, and a novel section title
extraction method. Evaluation on manually annotated real
world documents and integration with the Semantic Scholar
search engine shows the success of our approach. Extracting
data from figures and making use of them in user interfaces
is an exciting new line of research in digital libraries. We
hope that PDFFigures 2.0 will expand upon PDFFigure’s
success facilitating research in these new fields. While our

approach achieves very high accuracy in the computer sci-
ence literature, future work includes adapting our method to
be effective in additional scholarly domains. Combining our
heuristic approach with machine learning based approaches
is also an interesting avenue for future work.
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