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Abstract. Specifying the located nodes of a network plays an important role in the
success of many wireless sensor network (WSN) applications including object tracking,
detecting, monitoring, etc. In this paper, the multi-objective firefly algorithm for estimat-
ing the located nodes in a network is proposed to solve the localization issues in WSNs.
Objective functions of estimating the locations of all the nodes of WSN are considered
based on two criteria including the distance of nodes, and the geometric topology con-
straint. The simulation results are compared with other methods in the literature show
that the proposed method produces the considerable improvement in terms of localization
accuracy and convergence rate.
Keywords: Multi-objective firefly algorithm; Swarm intelligent; Node localization;
Wireless sensor networks.

1. Introduction. A wireless sensor network (WSN) could consist of hundreds or even
thousands of low-cost nodes communicating among themselves[1,13,14]. It has become
an important technology especially for several specialized applications including military
applications, disaster management, wildlife and environmental monitoring[2]. In appli-
cations of WSN, such as environment monitoring, precision agriculture, vehicle tracking,
and logistics, knowledge about the location of sensor nodes plays a key role[3]. The cor-
relation of sensor measurements with physical locations is required in these applications,
even if the accessible knowledge about positions of nodes is only approximate. Moreover,
information about current locations is used in geographical-based routing, data aggrega-
tion, and various network services. Hence, self-organization and localization capabilities
are one of the most important requirements in sensor networks.

Theoretically, location awareness can be enabled in principle by the use of a Global
Positioning System (GPS). However, this solution is not always viable in practice, because
a sensor network consists of thousands of nodes and GPS will be very costly. In addition,
GPS is not well suited to indoor and underground deployments, and the presence of
obstacles like dense foliage or high buildings may impair the outdoor communication
with satellites. Several alternative techniques have been developed to deal with these
limitations, as reviewed in[3], [4], among which fine-grained localization techniques may
represent the most suitable ones. Instead of requiring all nodes installed GPS, in these
schemes, only a few nodes of the network are called reference or anchor nodes which
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are endowed with their exact positions through GPS or manual placement. While other
nodes in a network are able to derive their positions by estimating their distances to
nearby nodes with using the measurement techniques included received signal strength
(RSS) measurements, time of arrival (ToA), and time difference of arrival (TDoA).

Traditionally, most studies focused on using single-objective optimization problem to
solve localization problems. The localization problem was modeled as a single-objective
function for optimization with the space distance constraint. These studies have also
achieved significant results in both accuracy and computational time. However, the single
objective function did not count really all impacting or affecting from the other objective
factors. But, if there is the combination of the objective functions into a multiobjec-
tive function that will obtain the meaningful result. For example, in some applications,
the obtained results of estimated nodes localizations could meet the space distance con-
straint, but they could not meet the geometric topology constraint due to ranging errors.
Recently, some works have proved the effectiveness of multiobjective optimization algo-
rithms to solve conflict multiple objectives [5], [6] It is more reasonable to model the node
localization as a multiobjective optimization problem, which can be described as solving
a Pareto solution, rather than simply being described as a single-objective optimization
problem. Based on this viewpoint, in this paper, a multiobjective model is adopted to
solve the node localization problem with objective functions included the distances con-
straint and the topological constraint. Pareto optimal solutions for obtaining optimal
solution is achieved by applying the multiobjective firefly algorithm (MFA).

The rest of this paper is organized as follows: a brief review of multiobjective localiza-
tion is given in Session 2. An analysis and designs for the localization algorithm based
on MFA is presented in Session 3. Experimental results and the comparison with other
methods are discussed in Session 4. Finally, the conclusion is summarized in Session 5.

2. Localization model. WSN assumes with n nodes that are deployed in two-dimensional
space of Z2 including m anchor nodes and n −m unknown nodes in which m < n. The
objective localization in a WSN is to estimate the coordinates of n −m unknown nodes
using the a priory information about the location of m anchor nodes. The coordinates
of unknown nodes need to meet both the space distance constraint and the geometric
topology constraint. An example of localization model has two objective functions that
included the space distances and the geometric topology as shown in Figure 1.

The reason for meeting the constraint of space distance is to make the estimated coordi-
nates close to the real values, and the reason of meeting the geometric topology constraint
is to make the network topology unique [3]. In the space distance constraint, the objective
function for the WSN localization includes two-phase process. In the first phase, it was
known as ranging process which nodes estimate their distances from anchor nodes using
the signal propagation time or the received signal strength indicator (RSSI). In the second
phase, position estimation of the nodes is carried out using the ranging information [7].
The localization error is minimized by using the optimization algorithm. Supposing the
two nodes i and j being in the communication radius of each other and effect of measure-
ment noise is simulated as a Gaussian additive white noise. In the first phase, each anchor
nodes in the deployment estimates its distance from each of its neighboring target nodes.
The ranging distance of the internode can be obtained by RSSI ranging technology and
denoted as following.

dij = rij + nij (1)

where rij is the actual distance between two nodes, and nij is a ranging error. rij is
able to be calculated as given:
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Figure 1. An example of localization model included two objective func-
tions: the space distances and geometric topology

of localization model has two objective functions that included the space distances and the geometric
topology as shown in Figure 1.

rij =

√
((xi − xj)2 + (yi − yj)2) (2)

where (xi, yi) and (xj , yj) are coordination of node i and j location.
The neighbor effect factor Ni is set to j ∈ 1, .., n, j 6= i if rij ≤ R, and its complement N̄i is set to

j ∈ 1, .., n, j 6= i if rij > R. Where R is the maximum distances for effective communication of node i.
The measurement noise nij is the ranging error of RSSI which follows a zero mean Gaussian distribution

with variance ϑ2, and it has a random value uniformly distributed in the range [di − diPn/100, di +
diPn/100]. In second phase, the objective function for the space distance constraint can be framed as.

f1 =

n∑

i=m+1

(
∑

j∈Ni

(d̂ij − dij)
2
) (3)

where m is anchor nodes and n − m is unknown nodes (m < n), and d̂ij is the estimated distance
between nodes i and j. It is defined as follows.

d̂ij = {

√
(x̂i − xj)2 + (ŷi − yj)2 if j is anchor√

(x̂i − x̂j)2 + (ŷi − ŷj)2 otherwise
(4)

where (x̂i, x̂j) is the coordinate of the estimated node(i,j), and (xj , yj) is the coordinate of the anchorj .
The second objective function of the geometric topology constraint is defined by

f2 =

n∑

i=m+1

(
∑

j∈Ni

θij +
∑

j∈Ni

(1− θij)) (5)

The geometric topology constraint represents the connectivity constraint which dissatisfies the current
estimated positions of non-anchor nodes [7]. And θij is denoted by

θij =

{
1 if d̂ij > R
0 otherwise

(6)

The space distance constraint and the geometric topology constraint imply the accuracy of the coor-
dinates of the nodes. The high accuracy of estimated coordinates of the unknown nodes consequently
depends on the optimization approach for dealing with the objective functions.
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Therefore, estimating coordinates of the unknown nodes can be modeled to search the optimum solu-
tion for the multiobjective optimization issues, which can be obtained by decreasing both values of the
objective functions f1 and f2.

3. Multiobjective Firefly Algorithm for Localization. The basic version of the firefly algorithm
(FA) is only for single objective optimization. In order to solve multiobjective functions of the localization
in WSN, FA is extended to multiobjective firefly algorithm (MFA). The basic version of FA and Pareto
optimal front are first briefly reviewed, and the localization problem in WSN will be dealt with then it
based on MFA.

3.1. The Basic Firefly Algorithm. FA was developed by the inspiration of behavior of fireflies[8]. In
essence, the three idealized rules were considered for simulation. First, the fireflies brightness is attractive
to each other ones.

Second, the less bright one will move towards the brighter one.
Finally, attractiveness is proportional to the brightness and they both decrease as their distance in-

creases.
The brightness of a firefly is affected or determined by the landscape of the objective function.
A firefly’s attractiveness is proportional to the light intensity seen by adjacent fireflies.
The variation of attractiveness β with the distance r is defined as given following.

β = β0 × e−γr
2

(7)

where β0 is the attractiveness at r = 0.
The movement of a firefly i is attracted to another more attractive (brighter) firefly j determined by:

xt+1
i = xti + β0 × e−γr

2 ×
(
xtj − xti

)
+ αtε

t
i (8)

where xi and xj are locations of fireflies i and j.
The movement of firefly i is attracted to another more attractive (brighter) firefly j is determined by

the second term dues to the attraction. The third term is randomization with αt being the randomiza-
tion parameter, and εti is a vector of random numbers drawn from a Gaussian distribution or uniform
distribution at time t. If β0 = 0, it becomes a simple random walk.

3.2. Pareto Optimal Front. The domination of a solution vector x = (x1, x2, .., xn)
T

on a vector

y = (y1, y2, .., yn)
T

for a minimization problem if and only if xi <= yi for ∀i ∈ 1, ..., n and ∃i ∈ 1, ..., n :
xi < yi.

It means that is no component of x is larger than the corresponding component of y, and at least one
component is smaller.

Similarly, the dominance relationship could be defined by:

x 4 y ⇔ x ≺ y ∨ x = y. (9)

For maximization problems, the dominance can be defined by replacing symbol of ≺ with the symbol of
�.

Therefore, a point x∗ is called a non-dominated solution if no solution can be found that dominates
on it.

The Pareto front PF of a multi-objective can be defined as the set of non-dominated solutions as
following.

PF = {s ∈ S| @ s′ ∈ S : s′ ≺ s} (10)

where S is the solution set.
A good approximation could be obtained from the Pareto front if a diverse range of solutions should

be generated using efficient techniques[9].

3.3. Optimal Localization based on MFA. The optimal solution of multiobjective optimization can
be obtained from the Pareto optimal solution. Multiobjective optimization issue for a minimization
problem with d-dimensional decision vectors and h objectives is given by

Minimize F (x) = (f1 (x) , f2 (x) , ..fh (x))
Subject to x ∈ [xL, xU ] ,

(11)
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Figure 2. Pseudo Code of Multiobjective Firefly Algorithm (MFA) for Localization

where x is a decision vector as a set of (x1, x2, .., xu)X ∈ Rdand F (x) is the objective
function with the objective vector as a set of (f1, f2, .., fu) ∈ Y ∈ Rh. The decision
vector x is belonging to the d -dimensional decision space X, which is corresponding to
the space for d dimensional of fireflies in FA. The objective function F (x) belongs to the
h-dimensional objective space Y, in which it is mapping functions from the decision space
to the objective space. xL,and xU are lower and upper bound constraints of the agent
range, respectively. The set of all the fireflies meeting the constraints forms the decision
space feasible set ω = x ∈ Rd|x ∈ [xL, xU ].

The purpose of optimization is to find the Pareto-optimal solution. The decision space
includes the dimension d and the objective space h. We begin with a generated population
of Np fireflies randomly so that these fireflies should distribute among the search space
as uniformly as possible. This can be achieved by using sampling techniques via uniform
distributions. The model the estimated coordinates of n − m unknown nodes as the
decision vectors, and the two objective functions defined by Eqs. (3) and (5) consist of
the objective function F(x). Therefore, from Eqs. (3)(5) and (11) are in MFA, it can be
formulated in the optimum mathematical form as

Minimize F (x) = (f1(x̂i, ŷi)f2(x̂i, ŷi)

Subject to (x̂i, ŷi) ∈ (x̂L, ŷL)(x̂U , ŷU)

i = m+ 1, ..n,

(12)

where decision vectors x = (x̂i, ŷi)are the estimated coordinates corresponding to solutions
in FA. (x̂i, ŷi) ∈ (x̂L, ŷL)(x̂U , ŷU) are the lower and upper bound constraint values, f1 is the
objective function of the space distance constraint, and f2 is the objective function of the
geometric topology constraint. Obtaining the multiobjective Pareto optimal solution is
the ultimate goal of building a multiobjective optimal model for localization issues, which
meets both the space distance constraint and the geometric topology constraint. There-
fore the main essence of MFA can be described as determining the dominant relationship
according to the decision space feasible set Ω and the Pareto front F (x∗) saving Pareto
optimal solution setS in an archive by Eq. (10) and updating the best solution of mul-
tiobjective. An appropriate definition of objective functions with associated non-linear
constraints. Once the tolerance or a fixed number of iterations is defined, the iterations
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Figure 3. Setting up a network with different scenarios included: a) the
number of nodes was 100 in an area of 100m×100m with 10% anchor node
rate; b) the number of nodes was 100 in an area of 100m×100m with 10%
anchor node rate; c) the number of nodes was 200 in an area of 100m×100m
with 10% anchor node rate, and d) the number of nodes was 200 in an area
of 100m×100m with 5%anchor node rate.

start with the evaluation of brightness or objective values of all the fireflies and compare
each pair of fireflies. Then, a random weight vector is generated, so that a combined best
solution g∗ can be obtained. Noticed, the sum of generated weight is equal to 1. The
non-dominated solutions are then passed onto the next iteration. At the end of a fixed
number of iterations, the non-dominated solution points can be obtained to approximate
the true Pareto front. The random numbers of the weight are generated based on the
random walks that optimization of a combined objectives functions is summed up as:

F (x) = wk × f1 + (1− w)× f2,
∑P

k=1
wk = 1, (13)

Here wk is the weight which is generated by pk
P

, where pk are random numbers, and P is a
rescaling operation that is generated uniformly. Clearly, the weights wk should be chosen
randomly at each iteration, so that the non-dominated solution can sample diversely along
the Pareto front. If a firefly is not dominated by others in the sense of Pareto front, the
firefly moves according to Eq. (14).

xt+1
i = gt∗ + αt × εti (14)

where gt∗ is the best solution found so far for a given set of random weights. The main
steps of the algorithm process are shown in Figure 2 as the pseudo code of multiobjective
firefly algorithm (MFA) for localization in WSN.
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4. Simulations and Analysis. In this section, the estimation of unknown nodes for
the optimal localization in a sparse network based on the multiobjective firefly algorithm
(MFA) method is investigated. The simulations have been done applying MFA with
objective functions f1 and f2, and the localization issues had been done using methods
of the parallel firefly algorithm [10] and Pareto archived evolution strategies [11] [12].
In these simulations, we focus on the average localization errors rate. To evaluate the
proposed method MFA, the different situations have been implemented such as in vary-
ing nodes densities, anchor nodes, and diversity of the Pareto solutions for optimization
localizations.

Simulation results show the effectiveness of the proposed two objective functions in
tackling the fine-grained localization problem in WSNs. Sensor localization for the whole
sensor network was conducted in the following manner. The network consists of n nodes
are randomly deployed in 100m × 100m area with m anchor nodes being randomly gen-
erated from these nodes. Assuming that the RSSI ranging error eij follows a Gaussian
distribution. The different scenarios of setting the network were the variety of percentage
of anchor nodes and the density of nodes in the network, that shows in Figure3.

Table 1. The effect of the density for localization errors with different node number

Table 1 reports the average localization errors, measured under the condition of chang-
ing the network nodes density and the total number of nodes while holding on the anchor
node proportion as 20% and the communication radius of the radio range is fixed at 25
m. The increasing the number of anchors and the radio range of communication usually
make the localization result more satisfactory, but this also implies incurring more cost.

Figure 4 shows the comparison of four method curves in the effective density to local-
ization errors. All the average localization errors of three methods reduce as the nodes
increase, and the number of nodes does little effect on the errors when it is over 100. Ob-
viously, that the localization errors obtained by using PAES[11] and MFA were lower than
the errors created by using FA, and pFA [10] due to the geometric topology constraint
being considered by the first two methods.

Table 2 shows the relationship between the average localization errors and the anchor
node proportion while keeping for setting the communication radius of the fixed radio
range to 25 m. All the average localization errors decrease as the anchor node proportion
increases due to the increase of anchor nodes around unknown nodes resulting in localiza-
tion accuracy being improved. Figure 5 shows the comparison of the localization errors
with the different anchor node proportion.

Clearly, the methods of the proposed MFA and PAES have better performance in
localization accuracy than the pFA localization algorithm with the same anchor node
proportion due to the two objective functions being considered in MFA and PAES com-
pared to only one objective function being considered in FA, and pFA [10] without the
topology constraint. For example, obverted in column 3 and column 5 of Table 2, the
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Figure 4. Comparison of the effective density to localization errors

Table 2. The effect of the proportion for localization errors with different
anchor nodes rate

Figure 5. Comparison of the localization errors with the different anchor
node proportion
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the average localization error in MFA reduces 21.20% and 18.39% compared with the traditional pFA
method: 23.30% and 19.50%, respectively, under the condition of 10% and 20% anchor node proportion.
The proposed method MFA has slightly higher localization accuracy than PAES under the condition
of the same anchor node proportions. Compared with PAES, the proposed method MFA reduces the
average localization error 0.95% and 0.06%, respectively under the condition of 10% and 20% anchor
node proportion.

5. Conclusion. In this paper, we proposed an optimization localization in wireless sensor network
(WSN) based on multiobjective firefly algorithm (MFA). The localization model has made up two ob-
jective functions including the space distance constraint and the geometric topology constraint. The
simulation results were compared with the obtained of PAES method, the localization accuracy of the
proposed method MFA is slightly increase and the diversity rate of the proposed method is better than
PAES method. Compared with traditional FA, and pFA localization algorithm, the proposed MFA
method can improve the localization accuracy and convergence rate. In general, the performance of the
proposed method is shown to be a useful scheme.
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[11] M. Vecchio, R. López-Valcarce, and F. Marcelloni, A two-objective evolutionary approach based on
topological constraints for node localization in wireless sensor networks, Appl. Soft Comput. J., vol.
12, no. 7, pp. 1891–1901, 2012.

[12] J. D. Knowles and D. W. Corne, Approximating the nondominated front using the Pareto Archived
Evolution Strategy., Evol. Comput., vol. 8, no. 2, pp. 149–172, 2000.


