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Synopsis

In the first part of the lecture notes, the statistical tools that represent the foundations of
data assimilation are introduced. These tools are closely related to those of estimation
theory and to those of optimal control . The basic concept of statistical interpola-
tion will be introduced and the pursued goals will be clarified. Under certain conditions,
statistical interpolation becomes the so-called optimal interpolation , that entirely relies
on the method known as BLUE (that stands for Best Linear Unbiased Estimator). The
BLUE analysis turns out to often be equivalent to a variational problem which consists in
minimising a least squares functional.

Time is easily incorporated into the optimal interpolation approach, using cycles of op-
timal interpolation, which yields the method known as 3D-Var . A more sophisticated
sequential extension in time is known as the Kalman filter . Under certain conditions, a
variational principle equivalent to the Kalman filter can be derived. It is meant to min-
imise a functional defined over a four-dimensional space (3 for space and 1 for time). This
method is known as 4D-Var .

In the second part of the lecture notes, key probabilistic and ensemble data assimila-
tion techniques are presented. The hope is that the uncertainty quantification be better
achieved with these methods, while, even though the adjoint of the evolution model is not
used, non-linearity could be better taken into account. We will explain what the prob-
abilistic Bayesian standpoint to data assimilation is and introduce Bayes’ rule. We will
sketch the basics of the particle filter , which is essentially a Monte-Carlo implementation
of Bayes’ rule. Finally we will introduce the ensemble Kalman filter (EnKF ) which is the
practical and efficient adaptation of the Kalman filter for high-dimension applications, such
as in the geosciences. To make it viable, one needs a few clever tricks whose explanation
together with simple implementations are given.
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Textbooks and lecture notes

One of the father of modern data assimilation was Roger Daley, who wrote the first text
book on the subject (Daley, 1993). Crystal-clear lecture notes and review articles that
have been written by researchers with significant contributions to the subject offer a nice
first reading on the topic of data assimilation (Talagrand, 1997; Bouttier, 1997). Further-
more, detailed lecture notes are available on the web (in particular Todling, 1999). A
textbook on data assimilation and predictability in meteorology has been written by one
of the main researcher in the field, Eugenia Kalnay (Kalnay, 2003), and is filled with nice
insights, ideas and explanations. For a clarification on the concept of errors in the field of
data assimilation, Cohn (1997) is the recommended review article. For an exposition of
conventions and notations in the field, as well as a review of the methods, one is referred
to Ide et al. (1999). Other highly recommended but more specific and more recent text-
books are Evensen (2009); Lahoz et al. (2010); Blayo et al. (2015); Fletcher (2017). Others
recommended ones but a more mathematical emphasis are Reich and Cotter (2015); Law
et al. (2015).

I highly recommend the recent textbook on data assimilation by Asch et al. (2016). I am
co-author of the book and I am proud to mention that these notes inspired several chapters
of the book. The first part of the book is for beginners (and covers the first three chapters
of these notes); the second part covers more advanced topic (including chapter 5 of these
notes) while the last part gives many illustrated examples of the use of data assimilation
in many fields.

Finally, the review articles Carrassi et al. (2018); Janjić et al. (2018) offer a modern
overview on data assimilation, while being shorter than the textbooks.

M. Bocquet
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Chapter 1

Statistical interpolation

1.1 Introduction

How does one forecast the state of complex physical systems such as the atmosphere?

Let us take the concrete example of the temperature in Paris. Suppose daily temperature
has been measured over the city in the past few days. One wishes to forecast the daily
temperature in the forthcoming days. A simple procedure consists in extrapolating past
and already monitored temperatures to the coming days, assuming that the historical tem-
perature curve is smooth enough. Or one can rely on a statistical and historical database
that gives the average temperature for a given day of the year. This was the practice before
the era of numerical computing because the procedure is computationally cheap.

Another approach consists in using the knowledge one has on the dynamics of the system
by simulating the evolution of the temperature in the days to come. This is nowadays
enabled by considerable computing power. This requires to initialise the numerical model
with the latest recorded temperatures.

However, these methods appear to have serious limitations and soon enough the forecasted
temperature curve diverges from the true temperature curve (Figure 1.1), because of the
fundamentally poor predictability of the meteorological system.

An optimal procedure would be to combine the most exhaustive theoretical and observa-
tional knowledge. In our example, this means initialising the dynamics of the system using
all the past and present observations and not only the latest.

Data assimilation is defined as the set of statistical techniques that allows to improve
the knowledge of the past, present or future system states, jointly using experimental data
and the theoretical (a priori) knowledge on the system.

Statistical interpolation is one of the most simple techniques offering a solution to this
problem. Even though the technique is elementary (basically equivalent to a linear regres-
sion), its implementation on complex high-dimensional systems is not straightforward.
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Figure 1.1: True, extrapolated and simulated daily-average temperature curves.

1.1.1 Representation of the physical system

The state of the system is represented by a vector x composed of scalar entries. For
instance, each one of these entries can stand for the value of temperature of an air parcel
at precise coordinates (latitude, longitude, altitude) at a given well defined date.

In principle, a comprehensive description of the system state supposes that x is a continuous
vector field of components xα(

−−→
OM, τ) rather than a finite-dimensional vector field. For

each location and time (
−−→
OM, τ), x takes value in a vector space, the components of which

are indexed by α and can represent temperature, wind speed, moisture, pressure, gas
concentrations, etc.

With a view to numerical computations, it is necessary to represent this continuous field
in a limited-memory computer and hence to discretise it. Formally, one needs an operator
Π that projects the infinite dimensional space of the vector field to the finite-dimensional
space of its numerical representation. The image of x through Π is denoted xt, with
xt ∈ RNx . The t index refers to truth , the true state of the system. It is obviously an
abuse of language since xt is only a projection of the true continuous state. For instance, xt

could be the average of field x within a cell of a grid used for the numerical representation.

However, it is in practice impossible to know the exact true value of the entries of xt,
as much as it is impossible to know those of x. Therefore, our goal is to estimate this
vector. The result of the estimation procedure for xt is a vector of the same dimension Nx,
denoted xa, where a refers to analysis. If the outcome of an earlier or present time partial
analysis is used as the starting point of a new analysis, this vector is denoted xb ∈ RNx

where b stands for background . It represents some prior knowledge meant to be used in
the subsequent analysis.

An estimation system needs to feed on observations of the real system in order to reduce
the errors committed in the estimation of the system state. These observations can be
performed in any location and time. They can even be averages of the state variables

Introduction to data assimilation
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when the instrument resolution is coarse. In realistic systems, these locations are not
necessarily collocation points used in the numerical discretisation of the system computer
representation. By interpolating, extrapolating and filtering, one should be able to provide
a data set of size Ny which is related by a map to all or part of the entries of xt; y ∈ RNy

will denote the vector of observations.

1.1.2 The observational system

Instruments to monitor the atmosphere

An ambitious data assimilation system requires a lot of observational data. Here, we give an
overview of the global observational system used by the numerical weather prediction
operational centres.

Fundamentally, there are two types of observations. The first set gathers the conventional
observations. Today, they are far less abundant than the remote sensing observations,
especially those delivered by space-born instruments (on satellites). However, the conven-
tional observations are less redundant and, in general, more precise. Besides, they offer a
direct, often in situ, sampling of the physical system as opposed to remote sensing obser-
vations, such as radiances. In 2014, 99 % of the data processed by the European Centre
for Medium-Range Weather Forecast (ECMWF) originated from satellites but only 91.5
% of the observations that are actually used in the analysis were space-born.

These conventional observations include:

• the measurements from synoptical stations (SYNOP network),

• measurements from commercial aircraft on regular flights,

• measurements from the ocean buoys and measurements from the commercial ships,

• measurements from the sounding balloons (radiosounding),

• LIDAR measurements (active sounding by laser ray from the ground),

• radar measurements, that enables to locate water content, precipitations.

The second set of observervations correspond to the satellite measurements that emerged
in the 1970’s. Since the end of the 1970’s until a few years from now, the total number of
measurements acquired at each round of observation had increased exponentially. In 2014,
the ECMWF processed 70× 106 scalar data per day, but only 3.6 × 106 scalar data were
actually assimilated.

From the data assimilation standpoint, satellite has enabled the use of a considerable
amount of data. It has also enabled a much better coverage of the globe, and especially in
the southern hemisphere mostly covered by oceans. Significant progress has been recorded
when the monitoring of the southern hemisphere by satellite was substantially improved.

M. Bocquet
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1.1.3 Error modelling

Modelling the observation process and the observational error

In practice, the knowledge of y only gives partial and flawed information about the state
vector xt. There is a chain of transformations between y and xt needed to relate them.
Some of these transformations are accurate; others are approximate and erroneous. Let us
have a look at this chain.

We have already mentioned the fact that only part of the state vector can be probed by
observation. For instance, in oceanography, satellite sounders provide data on the sea sur-
face height, and hence provide information on the sea motion at the surface, but it is much
more difficult to get marine data in the depths. The lack of observations or observability
is not a source of error per se; it is merely the signature of an underdetermination of the
system state (roughly Ny ≪ Nx). For the ECMWF meteorological model (the IFS) and
for a data assimilation cycle, vector xt is of size Nx = 2×109 (T1279L137 since July 2013)
whereas the observation vector y is of dimension Ny = 2× 107!

To complicate the processing of observations, there is not always an immediate relation-
ship between the state variables of xt and the observations of y. For instance, radiances
measured by satellite instruments depend on the total vertical atmospheric column. The
entries of y are related to the system state only through linear combinations or nonlinear
functions of the variables of xt. Hence, there is a quite involved map that relates xt to y.

The underdetermination is not the only source of mismatch between the observations and
the system state. These errors can be classified into instrumental errors and represen-
tativeness errors.

The most obvious usually well identified and characterised, source of error is the instru-
mental error induced by the measurement process. It affects the value of y additively
or/and multiplicatively. Knowing the true and continuous state of the system x, one wishes
to build the vector of the observations meant to represent y. We shall denote this vector
h [x], whose outcome is the construction of the map h. In the absence of instrumental
error, one has y = h [x]. But in the presence of (additive) instrumental error eµ ∈ RNy ,
we should write instead

y = h [x] + eµ. (1.1)

However, in practice, one can only use xt, the numerical counterpart of x. It is therefore
useful to build the vector of observations that can be compared to x, using the true discrete
state of the system. This somehow different observation map can be written H[xt]. The
map H is known as the observation operator . It includes several transformations such as
projections, but also interpolations made necessary by the information lost in the projection
by Π. This is formally written as

y = h [x] + eµ

≜ H[xt] + er + eµ, (1.2)

where
er ≜ h [x]−H[xt] = h [x]−H[Πx] = (h−H ◦Π) [x], (1.3)

Introduction to data assimilation
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is the representativeness, or representation error . The symbol ≜ signals a definition.
This construct is summarised by the schematic in Fig. 1.2. It can be condensed into

y = H[xt] + eo, (1.4)

with eo ≜ er+eµ. Here, we have assumed that h and H are well known. But an additional
source of error could be an imperfect knowledge of the map H. In that case, the error in
the modelling of H is called model error .

Error statistics

We first assume that the observation error has no bias. This means that E[eo] = 0, where
E is the expectation operator. If, on the contrary, there is a bias, i.e. b ≜ E[eo] ̸= 0, it is
often possible to diagnose it and to subtract its value from eo, so as to make the corrected
error unbiased, i.e. E[eo − b] = 0. Let us introduce R, the observation error covariance
matrix defined by

[R]ij = E [[eo]i [e
o]j ] . (1.5)

This is a symmetric matrix of dimension RNy×Ny . Moreover, we assumed it to be positive
definite (i.e. e⊤Re > 0 for all e ∈ RNy different from 0), which implies that it is invertible.

In the following, we shall assume that R is known. Practically, it is important to either
know it or to have a good estimation of it; the quality of the analysis depends on it. Quite
often R is diagonal or assumed so, which means that the observations are statistically
independent from one another. In practice, correlations are nevertheless possible: temporal
and spatial correlation for the satellite measurements, etc.

y = H[xt] + eo oo y = h [x] + eµ

H[xt]

OO

h [x]

instrumental error
OO

interpolation
integration

transformation

OO

integration
transformation

OO

xt
Π =

discretisation
integration

oo x

Figure 1.2: Breaking down of the observation process and its attached errors.
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8 Statistical interpolation

Background and analysis errors

The background error is defined by

eb = xb − xt. (1.6)

This is a measure of the discrepancy between an a priori estimate (before the analysis)
and the (unknown) truth. This leads to the definition of the background error covariance
matrix B:

[B]ij = E
[
[eb]i [e

b]j

]
. (1.7)

This is a symmetric matrix of dimension RNx×Nx . Moreover, it is assumed to be positive
definite, hence invertible. It is assumed that eb has no bias, i.e. E[eb] = 0, or that the
bias has been subtracted.

The analysis error is defined by
ea = xa − xt. (1.8)

It defines the gap between the outcome xa of the analysis process and the (unknown) truth
xt. It leads to the definition of the analysis error covariance matrix Pa as

[Pa]ij = E [[ea]i [e
a]j ] . (1.9)

which is a symmetric matrix of dimension RNx×Nx .

Furthermore, we shall assume that eo and eb are uncorrelated. There is no fundamental
reason why the observation of a system, seen as a stochastic process, be correlated to
a prior knowledge of the same system. This seems reasonable even in a realistic context.
However, if the background has been obtained from observations of the same type, possibly
with the same instruments, this assumption could been breached.

Model error

In the field of geophysical data assimilation, an evolution model Φ relate x(τ +1) to x(τ),
system states at times τ + 1 and τ :

x(τ + 1) = Φ[x(τ)]. (1.10)

In meteorology, this model could be the integral operator, or resolvent , of the so-called
primitive equations (momentum equations, air mass conservation equation, water mass
conservation equation, state equation for the air (perfect gas), conservation of energy (first
law of thermodynamics)). In atmospheric chemistry data assimilation, it could correspond
to the resolvent of the transport and fate equations of chemical gaseous, particulate and
aerosol species.

At first, we assume that this transition operator Φ is known. It is a faithful representation
of the dynamics of the real system. But, again, a numerical representation implies a
discretisation: xt = Πx. The propagation Eq. (1.10) has to be projected using Π, which
yields

xt(τ + 1) = Πx(τ + 1) = ΠΦ[x(τ)]

≜ M [xt(τ)] + em, (1.11)

Introduction to data assimilation



1.2 Statistical interpolation 9

where the model error em is given by

em ≜ ΠΦ[x(τ)]−M [xt(τ)] = ΠΦ[x(τ)]−M [Πx(τ)] = (Π ◦ Φ−M ◦Π) [x(τ)]. (1.12)

This kind of model error belongs to the class of the representativeness (or represen-
tation) errors.

However, because the system that is modelled is complex and because of the necessary
approximations in the derivation and implementation of the model, the numerical model
Φ has to be imperfect, let alone M . Therefore, the model error em is actually the sum
of a representativeness error as already identified, and of an error that characterises the
imperfection of the model. This latter error is distinct from the modelling error in the
observation operator although they are similar in nature.

1.1.4 The estimation problem

The goal is to study a physical system described by the vector state xt. One assumes that
our best estimation of the system state is xb. This background is likely to result from an
earlier data assimilation analysis or from an earlier statistical analysis. In the absence of
any other source of information, it sums up to our best estimation of the system state.
Observations y that are performed on the system brings in new information through the
H operator. Moreover, ideally, one assumes to know the statistics of the observation error
eo up to second-order moments (E[eo],R). We also assume that we know the statistics for
the background error eb up to second-order moments (E[eb],B).

When new observations are available, we are in a position to improve our estimation
and yield xa, exploiting the information contained in these new observations as well as
the background xb. We are also interested in evaluating the error ea committed in the
analysis, or its statistics.

There are of course many ways to define an analysis. Yet, we are interested in the best
possible analysis, i.e. an analysis that would minimise the magnitude of the analysis error,
for instance by minimising the trace of the analysis error covariance matrix Tr(Pa).

1.2 Statistical interpolation

1.2.1 An Ansatz for the estimator

The linear hypothesis

Here, we shall assume that the observation operator H is linear. It can be seen as a matrix
in RNy×Nx . It will be denoted H, which indicates that the operator is linear, or that it is
the tangent linear operator1 of the nonlinear operator H : H = H ′.

Let us define what a tangent linear operator is as it plays an important role. If the
observation operator is the map: x 7→ y = H[x], the related tangent linear operator is

1also called the Jacobian matrix.
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10 Statistical interpolation

defined by the expansion of the operator around x; for i = 1, . . . , Ny

δyi =

Nx∑
j=1

∂Hi

∂xj |x
δxj . (1.13)

The tangent linear operator is the linear operator whose action is defined by the matrix
H, of entries

[H]ij =
∂Hi

∂xj |x
. (1.14)

If H is linear, i.e. H[x] = Hx, then H ′ = H; the tangent linear identifies with the original
observation operator. Consequently, the tangent linear operator H ′ = H depends on x if
and only if H is nonlinear.

A simple but nevertheless non-trivial Ansatz for the estimate xa consists in choosing for
the analysis a vector of the form

xa = Lxb +Ky, (1.15)

where L is a matrix of dimension Nx×Nx and K is a matrix of dimension Nx×Ny. Hence
xa is a linear combination of the available information (L and K are linear operators).
Given the observation equation y = Hxt + eo, the error attached to this combination can
be estimated as follows.

xa − xt = L
(
xb − xt + xt

)
+K

(
Hxt + eo

)
− xt

ea = Leb +Keo + (L+KH− I)xt. (1.16)

First, one wishes that the errors be unbiased. Recalling that we assumed that the obser-
vation and background errors are unbiased (E[eo] = 0 and E[eb] = 0), one can infer from
the previous calculation that E[ea] = (L+KH− I)E[xt]. Therefore, we require that

L = I−KH, (1.17)

which is a sufficient condition (though not necessary).

As a result, we obtain a more constrained Ansatz which is now linear and unbiased :

xa = (I−KH)xb +Ky,

xa = xb +K (y −Hxb)︸ ︷︷ ︸
innovation

. (1.18)

K is a linear map, i.e. a matrix, from RNy to RNx . It is called the gain . The vector
y−Hxb in RNy is called the innovation vector. This innovation is an expression formula
for the additional information brought in by the observations compared to the background.
The error covariance matrix that can be obtained from the innovation vectors is what is
usually called the information matrix in information theory.

Since K is linear, the analysis is merely a linear interpolation. Actually, it should more ad-
equately be called a linear regression. This interpolation has an historical naming since the
first analyses used in meteorology (Cressman) were genuine mathematical interpolations
(i.e. y = H[xa] ).

With this linear estimator, the estimation problem now amounts to finding a “satisfying
gain” K.

Introduction to data assimilation



1.2 Statistical interpolation 11

The posterior error

Assume for a moment that we have determined an optimal gain matrix K. Then, what
would be the error covariance matrix Pa? In order to compute it, Eq. (1.18) is written
using the error vectors that have already been introduced

ea = eb +K(eo −Heb) (1.19)

so that

Pa = E
[
(ea)(ea)⊤

]
= E

[(
eb +K(eo −Heb)

)(
eb +K(eo −Heb)

)⊤]
= E

[(
Leb +Keo

)(
Leb +Keo

)⊤]
= E

[
Leb(eb)⊤L⊤)

]
+ E

[
Keo(eo)⊤K⊤

]
= LBL⊤ +KRK⊤, (1.20)

where we used the decorrelation of eo with eb and the linearity of K. To summarise, we
have

Pa = (I−KH)B(I−KH)⊤ +KRK⊤. (1.21)

1.2.2 Optimal estimation: the BLUE analysis

Continuing on, we seek to minimise the error committed in the analysis, as measured by
the scalar quantity Tr(Pa). Since we look for an optimal gain K that will be denoted
K⋆, we study the variation of Tr(Pa) with respect to a variation δK of K (i.e. a generic
infinitesimal variation in the entries of K):

δ(Tr(Pa)) = Tr
(
(−δKH)BL⊤ + LB(−δKH)⊤ + δKRK⊤ +KRδK⊤

)
= Tr

(
(−LB⊤H⊤ − LBH⊤ +KR⊤ +KR)(δK)⊤

)
= 2Tr

(
(−LBH⊤ +KR)(δK)⊤

)
. (1.22)

We have used Tr(A) = Tr(A⊤) and the fact that B and R are both symmetric. At
optimality, one infers that −(I−K⋆H)BH⊤ +K⋆R = 0, from which we obtain

K⋆ = BH⊤(R+HBH⊤)−1. (1.23)

The estimates of xa and Pa, which are the outcomes of this analysis, are called a BLUE
analysis for Best Linear Unbiased Estimator , since it is: linear (primary hypothesis
through L and K), without bias (first step of the derivation: L = I −KH) and optimal
(second step of the derivation).

1.2.3 Properties

Sherman-Morrison-Woodbury formula

Formula Eq. (1.23) is the most frequently used form of the optimal gain. However, the
same optimal gain can be written differently

K⋆ = (B−1 +H⊤R−1H)−1H⊤R−1. (1.24)
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12 Statistical interpolation

The equivalence between Eq. (1.23) and Eq. (1.24) is an immediate consequence of the
Sherman-Morrison-Woodbury identity . It is proven through

BH⊤(HBH⊤ +R)−1

=
(
B−1 +H⊤R−1H

)−1 (
B−1 +H⊤R−1H

)
BH⊤(HBH⊤ +R)−1

=
(
B−1 +H⊤R−1H

)−1 (
H⊤ +H⊤R−1HBH⊤

)
(HBH⊤ +R)−1

=
(
B−1 +H⊤R−1H

)−1
H⊤R−1

(
R+HBH⊤

)
(HBH⊤ +R)−1

=
(
B−1 +H⊤R−1H

)−1
H⊤R−1. (1.25)

This equivalence turns out to be useful, both from a theoretical but also a practical stand-
point. For instance, the observation space is quite often much smaller than the dimension
of the state space, so that the inversion of the matrix B−1+H⊤R−1H is much more costly
than the inversion of the matrix R + HBH⊤. Therefore, it is often useful to resort to
(1.23).

Optimal analysis error

Choosing the optimal gain Eq. (1.23) for the error estimation, the posterior error covariance
matrix Eq. (1.21) simplifies to

Pa = (I−K⋆H)B. (1.26)

Indeed, we have

Pa = (I−KH)B(I−KH)⊤ +KRK⊤

= (I−KH)B+
[
KR− (I−KH)BH⊤

]
︸ ︷︷ ︸

=0 if K=K⋆

K⊤. (1.27)

The expression in brackets in the right-hand side is zero when the gain is optimal (K = K⋆)
so that we obtain the desired result. This justifies the name gain matrix ; the operator
I−K⋆H measures the shrinkage of the innovation vector into

y −Hxa = (I−HK⋆)(y −Hxb), (1.28)

which is called the analysis residue .

Two classical expressions for Pa can be obtained using Eq. (1.26), together with the two
formula for the gain, Eq. (1.23) and Eq. (1.24). Indeed one has in the one hand

Pa = (I−K⋆H)B

= (I−BH⊤(R+HBH⊤)−1H)B

= B−BH⊤(R+HBH⊤)−1HB, (1.29)

and

Pa = (I− (B−1 +H⊤R−1H)−1H⊤R−1H)B

= (B−1 +H⊤R−1H)−1
(
B−1 +H⊤R−1H−H⊤R−1H

)
B

= (B−1 +H⊤R−1H)−1 (1.30)
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1.2 Statistical interpolation 13

in the other hand. This last formula establishes that Pa is invertible and hence that it is a
symmetric positive definite matrix. It also shows that the inverses of the error covariance
matrices (confidence , or precision matrices) are additive because

(Pa)−1 = B−1 +H⊤R−1H. (1.31)

The optimal gain K⋆ can be related to Pa through the following useful formula

K⋆ = PaH⊤R−1. (1.32)

Indeed, one has

PaH⊤R−1 = (B−1 +H⊤R−1H)−1H⊤R−1 = K⋆. (1.33)

The innovation and the analysis residue are unbiased

A consequence of the observation operator linearity and of the absence of bias of the
analysis error ea is that the analysis residue y −Hxa is also unbiased. Indeed

y −Hxa = Hxt + eo −Hxa = eo −Hea, (1.34)

from which it is immediate to conclude E [y −Hxa] = 0. Because we have assumed that
the background error is unbiased, we have the same for the innovation vector:

y −Hxb = Hxt + eo −Hxb = eo −Heb, (1.35)

from which we obtain E
[
y −Hxb

]
= 0.

Orthogonality of the analysis with the analysis error

Let us calculate the following covariance matrix even if the gain is not optimal

C = E
[
xa (ea)⊤

]
. (1.36)

We assume that the background satisfies:

E
[
xb
(
eb
)⊤]

= 0. (1.37)

This means that the background and its related error are uncorrelated.

We have seen that xa = xb +K
(
y −Hxb

)
= xb +K

(
−Heb + eo

)
. As a consequence

C = E
[(

xb +K
(
−Heb + eo

))(
(I−KH) eb +Keo

)⊤]
= −KHE

[
eb(eb)⊤

]
(I−KH)⊤ +KE

[
eo(eo)⊤

]
K⊤

= K
[
−HB (I−KH)⊤ +RK⊤

]
. (1.38)

Then, if the analysis is optimal, we obtain KR − (I−KH)BH⊤ = 0, so that C = 0.
Hence, the estimate xa and the analysis error ea are orthogonal. Actually orthogonality
and optimality are equivalent here! That is why the analysis error is uncorrelated from the
estimate resulting from the same analysis.
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14 Statistical interpolation

1.3 Variational equivalence

Let us make the same assumptions as for the BLUE derivation, i.e. that H is a linear
operator and denoted H. All the statistical hypotheses remain the same. We wish to
show that the BLUE result can be be obtained using variation calculus, i.e. through the
minimisation of a (multivariate) function. This is a variational approach to the problem.
A sufficiently regular cost function F , i.e. a function from RNx to R, have a generic
quadratic expansion around x0 of the form

F (x) = F (x0) + (x− x0)
⊤∇F|x0

+
1

2
(x− x0)

⊤Hess|x0
(x− x0) + o(||x− x0||2), (1.39)

where ∇F|x0
, a vector that generalises the first derivative, is called the gradient , and

Hess, a matrix that generalises the second derivative, is called the Hessian . They are
defined by [

∇F|x
]
i
=

∂F

∂xi |x
,

[
Hess|x

]
ij
=

∂2F

∂xi∂xj |x
. (1.40)

1.3.1 Equivalence with BLUE

We define the following function, from RNx into R

J(x) =
1

2

(
x− xb

)⊤
B−1

(
x− xb

)
+

1

2
(y −Hx)⊤R−1 (y −Hx) , (1.41)

which is called a cost function or objective function . Since H is linear, J is a quadratic
functional of x. Since B is positive definite, this functional is strictly convex and as a
consequence has a unique minimum. Where is it?

δJ(x) =
1

2
(δx)⊤B−1

(
x− xb

)
+

1

2

(
x− xb

)⊤
B−1δx

+
1

2
(−Hδx)⊤R−1 (y −Hx) +

1

2
(y −Hx)R−1 (−Hδx)

= (δx)⊤B−1
(
x− xb

)
− (δx)⊤H⊤R−1 (y −Hx)

= (δx)⊤∇J. (1.42)

The extremum condition is ∇J = B−1(x⋆ − xb) −H⊤R−1(y −Hx⋆) = 0, which can be
written

x⋆ = xb + (B−1 +H⊤R−1H)−1H⊤R−1︸ ︷︷ ︸
K⋆

(y −Hxb). (1.43)

Therefore, x⋆ identifies with the BLUE optimal analysis xa. Let us remark that the
Sherman-Morrison-Woodbury would be needed to prove the equivalence with the initial
BLUE result, Eq. (1.23).

1.3.2 Properties of the variational approach

Analysis precision and the Hessian

The functional gradient is obtained from Eq. (1.42),

∇J(x) = B−1(x− xb)−H⊤R−1(y −Hx). (1.44)
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1.3 Variational equivalence 15

In this particular case, since the cost function is quadratic, it is simple to compute the
Hessian

Hess|x = B−1 +H⊤R−1H. (1.45)

As a matter of fact, this coincides with the expression of the inverse of the analysis error
covariance matrix that we have already encountered! Therefore, we have

Pa = Hess−1
|x . (1.46)

This is more than just another expression for Pa. This formula shows that the precision of
the analysis is proportional to the curvature of the cost function J . Hence, the narrower
the minimum, the better the analysis.

Nonlinear extension

Besides a new light shed on the problem, the variational formalism has two important
traits. Firstly, it offers an elegant and straightforward extension of the linear problem
to the nonlinear problem when H is not linear anymore. By definition, this extension is
impossible within the BLUE formalism without linearising the observation operator, which
would be an approximation.

A more general algorithm

Secondly, the variational approach has an algorithmic advantage. Within the BLUE ap-
proach, one needs to compute the inverse of matrix R+HBH⊤ that appears in the gain
K⋆ (or at least solve a linear system thereof). Within the variational approach, the cost
function J is minimised, which requires to compute the product of a vector by the inverses
of B and R several times. This may show a lower computational burden than the inversion
of the full matrix when the number of iterations is limited.

The variational formulation of the statistical interpolation problem is the analysis and
the main step of what is usually coined 3D-Var . This type of analysis has been used
operationally in meteorological weather services in the 1990’s replacing the BLUE-like
optimal interpolation. In the 2000’s it has been replaced in many centres by the 4D-Var
for the synoptic scale, a generalisation of the 3D-Var that we shall discuss in chapter 3.

1.3.3 When the observation operator H is non-linear

As we just explained, a significant advantage of the variational method is the possibility to
rigorously handle the case where H is a nonlinear operator. Let us look at the modification
that this induces in the analysis. In this case, J is defined by

J(x) =
1

2

(
x− xb

)⊤
B−1

(
x− xb

)
+

1

2
(y −H[x])⊤R−1 (y −H[x]) . (1.47)

We introduce the tangent linear of H at x, denoted H (see Eq. (1.14)). As opposed to
the linear case, H now depends on where H has been linearised, i.e. x. The gradient of J
is similar and reads

∇J(x) = B−1(x− xb)−H⊤
|xR

−1(y −H[x]). (1.48)

Again, the precision of the analysis is nicely obtained from Pa = Hess−1
|x . This time,

however, the Hessian really depends on x.
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1.3.4 Dual formalism

Here, we assume that the observation operator is linear. The stating point is the following
cost function:

J(x) =
1

2

(
x− xb

)⊤
B−1

(
x− xb

)
+

1

2
(y −Hx)⊤R−1 (y −Hx) . (1.49)

A vector of Lagrange multipliers w is introduced, of dimension that of the observation
space, i.e. w ∈ RNy . It is used to enforce the observation equation, through the Lagrangian

L(x, ϵ,w) =
1

2

(
x− xb

)⊤
B−1

(
x− xb

)
+

1

2
ϵ⊤R−1ϵ+w⊤ (y −Hx− ϵ) . (1.50)

The optimum with respect to w of this functional is equivalent to the previous cost function
J(x). According to the minmax theorem, the minimum of the cost function J(x) coincides
with the maximum of the functional depending on w generated by the minimum of L with
respect to x and ϵ, denoted G(w). What is it? The null gradient condition at the minimum
implies that

x⋆ = xb +BH⊤w, ϵ⋆ = Rw. (1.51)

This leads to the following dual cost function

G(w) = −L(x⋆, ϵ⋆,w)

=
1

2
w⊤

(
R+HBH⊤

)
w −w⊤

(
y −Hxb

)
. (1.52)

The main advantage of this approach is that the optimisation of this cost function takes
place in the observation space RNy rather than in state space RNx . The observation space
is usually of dimension much smaller than that of the state space. This formalism is known
as PSAS standing for Physical Statistical space Assimilation System .

1.4 A simple example

Imagine you are shipwrecked at sea, a few kilometres away from the shores. Before boarding
a small lifeboat, you just had time to measure your coordinates (u, v) = (0, vb) with high
accuracy. The Ox axis is parallel to the shore, while the Oy axis is perpendicular. One
hour later, you want to estimate your new coordinates because the lifeboat has drifted
in the meantime. To this goal, you roughly guess the distance to the shore, denoted v0
with a variance σ2

0. But we want to use our knowledge of the precise coordinate of the
wreckage location, one hour ago. In the meantime, and in the absence of major sea stream,
the lifeboat has drifted. The probability for it to be at position (ub, vb) follows a normal
distribution of variance σ2

b which is a linear function of the elapsed time since the wreckage.
It is assumed that there is no correlation between the observation process and the drifting
process.

1.4.1 Observation equation and error covariance matrix

The state vector is that of the lifeboat coordinates x = (u, v)⊤. The observation equation
is y = Hx + ε, where the observation operator is H = (0, 1), the observation vector is
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Figure 1.3: The geometry of the lifeboat problem.

(v0), and the error ε follows a normal distribution of variance σ2
0. The observation error

covariance matrix is R = (σ2
0), while the background error covariance matrix is

B =

(
σ2
b 0
0 σ2

b

)
. (1.53)

1.4.2 Optimal analysis

The linear analysis is of the form xa = xb +K(y −Hxb) which translates into(
ua
va

)
=

(
0
vb

)
+K

(
vo − (0, 1)

(
0
vb

))
. (1.54)

Let us compute the optimal gain K⋆. To that end, we use the most efficient expression of
K⋆ when the number of observations is smaller than the number of state variables, i.e.

K⋆ = σ2
b

(
0
1

)(
σ2
o + (0, 1)σ2

b

(
0
1

))−1

=
σ2
b

σ2
o + σ2

b

(
0
1

)
. (1.55)

One concludes that (
ua
va

)
=

(
0

vb +
σ2
b

σ2
o+σ2

b
(vo − vb)

)
. (1.56)

Since the observation did not bring any new information on coordinate Ox, we stick to the
wreckage coordinate ua = 0. However, as time goes by, σb increases. Hence, va converges
to vo, which remains the most trustworthy information in this limit.

1.4.3 Posterior error

From Pa = (I−K⋆H)B, we obtain that

Pa =

 σ2
b 0

0
σ2
oσ

2
b

σ2
o + σ2

b

 . (1.57)
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We see that, as expected, the analysis does not improve our knowledge of the coordinate
parallel to the shore u. Its uncertainty stems from the drift, hence it is proportional to
time and increases with it. Differently, the uncertainty in coordinate v is shrunk by a

factor
√

σ2
o

σ2
o+σ2

b
. The finer the observation, the smaller the error. Denoting σ2

a the error on

coordinate v after the analysis, we find

1

σ2
a

=
1

σ2
o

+
1

σ2
b

. (1.58)

The interpretation of Eq. (1.30) is: the confidence (or precision) of the analysis is
the sum of the confidence of the observation and of the background .

1.4.4 3D-Var and PSAS

The related cost function of the equivalent variational problem is

J(u, v) =
1

2σ2
b

(
u2 + (v − vb)

2
)
+

1

2σ2
o

(vo − v)2. (1.59)

The cost function in the PSAS formalism is

G(w) =
1

2
(σ2

o + σ2
b)w

2 − w(v0 − vb), (1.60)

from which it is easy to derive the solution

w⋆ =
vo − vb
σ2
o + σ2

b

. (1.61)
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Chapter 2

Sequential interpolation: The
Kalman filter

In the previous chapter, we focused on the analysis part of a data assimilation scheme. We
have found an optimal estimator, as well as its uncertainty, given some prior information
(the background) and an observation set. A possible temporal dimension of the problem
was mentioned but mostly left aside.

In meteorology, we are interested in real time data assimilation. The collection of the
observations at the NWP centres, as well as the resulting analyses meant for real time
forecasting, need to be cycled sequentially in time, since the objective is to perpetually
track the system state. That is why a series of times t0, t1, . . . , tk, . . . , tK is defined. They
mark the analyses of the data assimilation scheme. For synoptical scale NWP systems,
one typically has tk+1 − tk = 6 hours.

Moreover, sequential data assimilation introduces a new ingredient in the problem com-
pared to statistical interpolation: the evolution model for the system state typically defined
between times tk and tk+1. In meteorology and oceanography, it is the numerical model that
simulates the real system dynamics (numerical implementation of the primitive equations).
In atmospheric chemistry, this could be a chemical transport model, which transports the
species and have them react.

The typical data assimilation scheme is as follows: at time tk, we have at our disposal the
outcome of a previous forecast, denoted xf

k, the index f standing for “forecast”. Therefore,
xf
k is the analogue of the background xb of statistical interpolation of chapter 1. At time tk,

we collect a set of observations stacked into the vector yk. Given xf
k and the observations

yk, an analysis is performed yielding the state estimate xa
k. Then, we make use of the

forward model to forecast the system state from time tk to time tk+1, from xk to xk+1.
Note that we have given up on the index t that referred to the truth in chapter 1. The
outcome of the forecast is denoted xf

k+1. It will serve as the background in the next cycle
(see Fig. 2.1). And so on . . . .
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Figure 2.1: The sequential scheme of the Kalman filter.

2.1 Stochastic modelling of the system

The following stochastic equations describe the evolution and observation of the physical
system {

xk = Mk(xk−1) +wk,
yk = Hk(xk) + vk,

(2.1)

where xk is the true state of the system at time tk. Let us describe this stochastic system:

• the first equation is the forecast step. Mk+1 is called the resolvent . It simulates the
evolution of the system from tk to tk+1. It may depend on time (non-autonomous
process), hence the k index. wk is the model error within Mk compared to the true
physical processes. It is assumed that this noise is unbiased, uncorrelated in time
(white noise) and of error covariance matrix Qk for each time tk, i.e.

E[wk] = 0 and E
[
wk w

⊤
l

]
= Qkδkl. (2.2)

• the second equation corresponds to the observation equation. Hk is the observation
operator at time tk. vk is the observation error, which is assumed to be unbiased,
uncorrelated in time (white noise) and of error covariance matrix Rk for each time
tk, i.e.

E[vk] = 0 and E
[
vk v

⊤
l

]
= Rkδkl. (2.3)

As an additional assumption, though quite a realistic one, there is no correlation between
model error and observation error, which translates into

E
[
vk w

⊤
l

]
= 0. (2.4)

From now on, it is assumed that the operators are linear. Hence Mk and Hk are noted Mk

and Hk. This hypothesis will be discussed, possibly lifted, later on.
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2.1.1 Analysis step

At time tk, we have a forecast xf
k which is assumed unbiased. It will serve as our back-

ground. The error covariance matrix related to xf
k is Pf

k. The statistical analysis that
stems from these elements, is similar to statistical interpolation. Moreover, if the estima-
tor of this analysis has the minimal possible variance, this analysis is the same as statistical
interpolation. Because of the linearity and of the null bias, it must be a BLUE analysis.
That is why we now use the results of chapter 1.

The xa
k analysis is of the form

xa
k = xf

k +Kk

(
yk −Hkx

f
k

)
, (2.5)

which guarantees that it is unbiased, since the related errors, yk and xf
k, are unbiased. As

a consequence, one has eak = (I−KkHk) e
f
k +Kkvk, so that the analysis error covariance

matrix is
Pa

k = (I−KkHk)P
f
k (I−KkHk)

⊤ +KkRkK
⊤
k . (2.6)

If the analysis is optimal, the optimal gain matrix K∗
k at time tk satisfies:

− (I−K∗
k Hk)P

f
k H

⊤
k +K∗

kR = 0. (2.7)

Hence, it can be written

K∗
k = Pf

kH
⊤
k

(
HkP

f
kH

⊤
k +Rk

)−1
. (2.8)

Finally, we obtain
Pa

k = (I−K∗
kHk)P

f
k. (2.9)

Within this sequential context, the gain is often called the Kalman gain , in honour of
Rudolph Kalman, electrical engineer and mathematician, who invented this filter in the
1960s.

2.1.2 Forecast step

Up to this point, we have used the observations to update our prior knowledge of the
system state (the background). Now, we need to forecast the system state from time tk to
time tk+1, using our (often imperfect) knowledge of the dynamics of the system.

We can build the following estimator

xf
k+1 = Mk+1 x

a
k. (2.10)

The linearity of Mk+1 ensures that the estimator is unbiased. The associated error is

efk+1 = xf
k+1 − xk+1

= Mk+1 (x
a
k − xk)− (xk+1 −Mk+1xk)

= Mk+1e
a
k −wk+1, (2.11)
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from which is calculated the forecast error covariance matrix:

Pf
k+1 = E

[
efk+1

(
efk+1

)⊤]
= E

[
(Mk+1e

a
k −wk+1) (Mk+1e

a
k −wk+1)

⊤
]

= Mk+1E
[
(eak) (e

a
k)

⊤
]
M⊤

k+1 + E
[
wk+1w

⊤
k+1

]
= Mk+1P

a
kM

⊤
k+1 +Qk+1. (2.12)

Contrary to the analysis step where the precision matrices were additive, the error covari-
ance matrices are additive in the forecast step.

2.2 Summary, limiting cases and example

Kalman filter
1. Initialisation

• System state xf
0 and error covariance matrix Pf

0.
2. For tk = 1, 2, . . .

(a) Analysis

• Gain computation K∗
k = Pf

kH
⊤
k

(
HkP

f
kH

⊤
k +Rk

)−1

• Computation of the analysis

xa
k = xf

k +K∗
k

(
yk −Hkx

f
k

)
• Computation of the error covariance matrix

Pa
k = (I−K∗

kHk)P
f
k

(b) Forecast
• Computation of the forecast xf

k+1 = Mk+1 x
a
k

• Computation of the error covariance matrix

Pf
k+1 = Mk+1P

a
kM

⊤
k+1 +Qk+1

2.2.1 No observation

When there is not any observation to assimilate, the Kalman filter boils down to the
forecast step, which reads

xf
k+1 = Mk+1x

f
k, (2.13)

Pf
k+1 = Mk+1P

f
kM

⊤
k+1 +Qk+1. (2.14)

If the dynamics is unstable (with positive Lyapunov exponents for instance), the error will
grow uncontrolled. Only the assimilation of observations can help reduce the global error.
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2.2.2 Perfect observations

Imagine we have a great confidence in the observations, so that we set Rk = 0. Also assume
that there are as many observations as state variables and that they are independent. That
is to say Hk est invertible. Then:

K∗
k = Pf

kH
⊤
k

(
HkP

f
kH

⊤
k +Rk

)−1

= Pf
kH

⊤
k

(
H⊤

k

)−1 (
Pf

k

)−1
H−1

k

= H−1
k . (2.15)

As a result, we have Pa
k = (I−K∗

kHk)P
f
k = 0, so that xf

k+1 = Mk+1x
a
k = Mk+1H

−1
k yk.

Moreover the forecast step reads Pf
k+1 = Mk+1P

a
kM

⊤
k+1 + Qk+1 = Qk+1. The forecast

errors only depend on model error, and the system can be perfectly known through obser-
vation.

2.2.3 A simple example

We are back to the lifeboat problem from chapter 1. On an hourly basis, the castaway
assesses the distance between the lifeboat and the shore and proceeds to an analysis. The
distance to the shore, assessed at time tk, k hours after the shipwreck at time t0, is denoted
yk. This estimator is assumed to be unbiased. As before, the variance is denoted σ2

o and is
supposed to be stationary. The true coordinates of the lifeboat are (uk, vk); the coordinates
of the analysis are denoted (uak, v

a
k); the coordinates of the forecast are denoted (ufk, v

f
k).

At the beginning (t0), one has (ua0, v
a
0) = (0, 0) by convention. In between times tk and

tk+1 we only know that the lifeboat has drifted, but we do not know in which direction.
Our model of the lifeboat amounts to a diffusion of the lifeboat position around the origin.
In this example, we have Mk+1 = I, the identity matrix. Model error is significant and
reads

Qk =

(
σ2
m 0
0 σ2

m

)
, (2.16)

where σm measures the uncertainty of the drift magnitude of the lifeboat between tk and
tk+1.

Finally, we assume that the analysis and forecast error covariance matrix are diagonal, i.e.

Pa
k =

(
λk 0
0 µk

)
Pf

k =

(
νk 0
0 ρk

)
, (2.17)

because no correlation should be induced between the two coordinates of the lifeboat
position. This will be verified a posteriori.

Analysis

Let us focus on time tk. The previous forecast has yielded state (ufk, v
f
k)

⊤. The castaway
proceeds to measure vok. He performs an optimal analysis with these observations. The
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Kalman gain is obtained from the calculation

K∗
k =

(
νk 0
0 ρk

)(
0
1

)(
σ2
o + (0, 1)

(
νk 0
0 ρk

)(
0
1

))−1

=
ρk

σ2
o + ρk

(
0
1

)
. (2.18)

The lifeboat coordinates are estimated to be(
uak
vak

)
=

(
ufk
vfk

)
+K∗

k

(
yk − (0, 1)

(
ufk
vfk

))
=

(
ufk
vfk

)
+K∗

k

(
yk − vfk

)
=

(
ufk

vfk +
ρk

σ2
o+ρk

(
yk − vfk

) ) (2.19)

From Pa
k = (I−K∗

kHk)P
f
k we infer that

λk = νk and
1

µk
=

1

σ2
o

+
1

ρk
. (2.20)

Forecast

Let us now consider the forecast step. The model does not modify the estimate of the
position (

ufk+1

vfk+1

)
=

(
uak
vak

)
. (2.21)

Using Pf
k+1 = Pa

k + σ2
m I, we can calculate the forecast error covariance matrix

νk+1 = λk + σ2
m, ρk+1 = µk + σ2

m. (2.22)

From the chaining of the analysis step followed by the forecast step, we have

ufk+1 = ufk, vfk+1 = vfk +
ρk

σ2
o + ρk

(
yk − vfk

)
, (2.23)

and
νk+1 = νk + σ2

m,
1

ρk+1 − σ2
m

=
1

σ2
o

+
1

ρk
. (2.24)

Since uf0 = 0, it is clear that ufk = 0 for any k: in the absence of observation, nothing
is learnt on the coordinate parallel to the shore. However, the uncertainty is a linear
increasing function of time since

νk = k σ2
m. (2.25)

From Eq. (2.24) on the uncertainty of coordinate v, one infers that ρk ≥ σ2
m. We can look

for a fixed point ρ∗ of the recurrence equation satisfying this constraint. It is solution of

ρ2∗ − σ2
mρ∗ − σ2

oσ
2
m = 0, (2.26)
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which leads to

ρ∗ =
σ2
m

2

(
1 +

√
1 + 4

σ2
o

σ2
m

)
, (2.27)

This is the asymptotic result of a compromise between the reduction of uncertainty due
to the assimilation of observations, and to the increase of the same uncertainty due to the
uncontrolled drift of the lifeboat. A posteriori, we easily check that ρ∗ ≥ σ2

m.

2.2.4 Second example: data assimilation with an oscillator

Consider the discrete model

x0 = 0, x1 = 1 and for 1 ≤ k ≤ K : xk+1 − 2xk + xk−1 = −ω2 xk. (2.28)

Clearly, this is a numerical implementation of the one-dimensional harmonic oscillator

ẍ+Ω2x = 0. (2.29)

This is a discrete second-order equation with Ω2 proportional to ω2. Therefore, a state
vector has two entries

uk =

(
xk
xk−1

)
(2.30)

The resolvent matrix is

Mk =

(
2− ω2 −1

1 0

)
, (2.31)

such that uk = Mkuk−1 for k ≥ 1. The observation operator is Hk =
(
1 0

)
. The

observation equation is
yk = Hk uk + ξk, (2.32)

with a Gaussian white noise ξk of variance g. The value of this variance is supposed to be
known. Observations may not be available at each time step.

The Kalman filter is tested on this example. Figure 2.2 is a representation of a data
assimilation experiment with a given set of observations.

2.3 The extended Kalman filter

Up to now, we have assumed that the hypothesis of linearity is valid. However, the following
conditions are frequently met in geophysical data assimilation:

• the observation operator Hk might be nonlinear. It if often the case when satellite
observations are considered. The observation operator that relates optical measure-
ments (radiances) to the state variables may involve a radiative transfer operator.
When diffusion is taken into account, this model might become strongly nonlinear.
Lidar and radar observations are other important examples,

• the evolution model Mk could be nonlinear. This is the case for the primitive equa-
tions (atmosphere and ocean). This is also the case in atmospheric chemistry assum-
ing the chemical reactions are second-order.

This does not mean that we have to abandon the Kalman filter. Instead, we need to adapt
it to handle the potential nonlinearity of these operators.

M. Bocquet



26 Sequential interpolation: The Kalman filter

Figure 2.2: The model trajectory is represented by the dashed curve. In addition to the
setup parameters given in the text, we have chosen K = 1000 time units, ω = 0.02 s−1.
The dots represent the observations, of variance g = 7. The observations are acquired
every ∆ = 50 time units. The full curve is the forecast of Hk u

f
k by the data assimilation

system.

2.3.1 Linearising the forecast step and the analysis step

Without mystery, the forecast is given by

xf
k+1 = Mk+1[x

a
k]. (2.33)

It can be shown that this estimator is only accurate to the first order in perturbations and
that it can be refined at some (important) numerical cost.

To obtain the forecast error covariance matrix, we shall use the fact that xa
k is meant to

be close enough to xk. The tangent linear matrix of Mk at xk will be denoted Mk. Let us
go again through the forecast step with error

efk+1 = xf
k+1 − xk+1 = Mk+1[x

a
k]− xk+1

= Mk+1 [xk + (xa
k − xk)]− xk+1

≃ Mk+1[xk] +Mk+1(x
a
k − xk)− xk+1

≃ Mk+1e
a
k −wk+1. (2.34)

As a result, we obtain
Pf

k+1 = Mk+1P
a
kM

⊤
k+1 +Qk+1. (2.35)

The estimator for the analysis step remains given by an analysis of the form

xa
k = xf

k +Kk

(
yk −Hk[x

f
k]
)
. (2.36)
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We infer

eak = xa
k − xk = xf

k − xk +Kk

(
yk −Hk[xk] +Hk[xk]−Hk[x

f
k]
)

= xf
k − xk +Kk

(
yk −Hk[xk] +Hk[xk]−Hk[x

f
k − xk + xk]

)
≃ efk +Kk

(
eok −Hk e

f
k

)
. (2.37)

and

Pa
k = (I−KkHk)P

f
k (I−KkHk)

⊤ +KkRkK
⊤
k . (2.38)

The Kalman gain becomes

K∗
k = Pf

kH
⊤
k

(
HkP

f
kH

⊤
k +Rk

)−1
. (2.39)

and, consequently, one has

Pa
k = (I−K∗

kHk)P
f
k. (2.40)

The optimal estimator is therefore

xa
k = xf

k +K∗
k

(
yk −Hk[x

f
k]
)
. (2.41)

Note that the tangent linear of Hk is used in K∗
k, but it is not used in the innovation vector

yk −Hk[x
f
k].

2.3.2 Summary

These modifications that extent the Kalman filter to the nonlinear context yields the
extended Kalman filter.
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Extended Kalman filter
1. Initialisation

• System state xf
0 and error covariance matrix Pf

0.
2. For tk = 1, 2, . . .

(a) Analysis
• Gain computation

K∗
k = Pf

kH
⊤
k

(
HkP

f
kH

⊤
k +Rk

)−1

• Analysis computation

xa
k = xf

k +K∗
k

(
yk −Hk[x

f
k]
)

• Error covariance matrix computation

Pa
k = (I−K∗

kHk)P
f
k

(b) Forecast
• Forecast state computation xf

k+1 = Mk+1[x
a
k]

• Error covariance matrix computation

Pf
k+1 = Mk+1P

a
kM

⊤
k+1 +Qk+1

2.3.3 Data assimilation with a non-harmonic oscillator

The following discrete model

x0 = 0, x1 = 1 and for 1 ≤ k ≤ K : xk+1 − 2xk + xk−1 = ω2 xk − λ2 x3k, (2.42)

is a numerical implementation of the anharmonic one-dimensional oscillator

ẍ− Ω2 x+ Λ2 x3 = 0, (2.43)

where Ω2 is proportional to ω2 and Λ2 is proportional to λ2. The related potential is

V (x) = −1

2
Ω2x2 +

1

4
Λ2x4. (2.44)

The second term stabilises the oscillator and plays the role of a spring force, whereas the
first term destabilises the point x = 0, leading to two potential wells. It is is a second-order
discrete equation, with a state vector that can be advantageously written

uk =

(
xk
xk−1

)
. (2.45)

The state-dependent transition matrix is

Mk =

(
2 + ω2 − λ2x2k−1 −1

1 0

)
, (2.46)
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such that uk = Mkuk−1 for k ≥ 1. The observation operator is Hk = (1, 0). The
observation equation is

yk = Hk uk + ξk, (2.47)

with a Gaussian white noise ξk of variance g. The value of this variance is supposed to be
known. The extended Kalman filter is tested with this nonlinear system. Figure 2.3 gives
an example of a data assimilation experiment with a given set of observations.

Figure 2.3: The dashed line represents the model trajectory (the truth). In addition to
the setup parameters given in the text, we choose K = 1000 time steps, ω = 0.035 s−1, and
λ = 0.003 s−1. The dots are the observations, of error variance g = 7. The observations
are acquired every ∆ = 25 time units. The full line represents the forecast of Hk u

f
k yielded

by the extended Kalman filter.
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Chapter 3

A generalised variational formalism:
4D-Var

On the one hand, we observed in the previous chapter that optimal interpolation could be
generalised to sequential interpolation when

• the system has a temporal dimension,

• its dynamics is described by a model (perfect or not, deterministic or stochastic).

This has led to the Kalman filter formalism.

On the other hand, in chapter 1, we extended the optimal interpolation technique to a
variational approach (3D-Var), which offers

• an efficient numerical implementation,

• an (a priori) easy and comprehensive generalisation to nonlinear problems.

Provided some conditions to be discussed later are met, we can contemplate a similar
extension for the Kalman filter as seen in chapter 2 by introducing a variational formalism
known as 4D-Var .

A rigorous equivalence between the analysis step of 4D-Var and that of the Kalman filter at
the end of a specific data assimilation time window can only be proven when the observation
operator H and the dynamics M are linear. These operators can depend on time (which
is recalled by the notation Hk and Mk), and we assume so in this chapter. In addition, we
will assume that the evolution model is deterministic and perfect. That is to say, it mirrors
the true model of the system and model errors are negligible. The variational problem is
said to be implemented with strong constraints.

3.1 Cost function and how to compute its gradient

In this chapter, we consider a partial trajectory of the system state, i.e. the K +1 vectors
xk for each of the K + 1 instants t0, t1, . . . , tK . Each of these state vectors belong to RNx .
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BLUE 3D−Var

4D−VarKalmanEnKF 4D−Var

3D−Var

Extended Kalman filter Time

Non−linear generalisations

Figure 3.1: The main standard data assimilation schemes and their connections. The
EnKF has not been studied yet. 4D-Var is the focus of this chapter.

In addition, we assume that for each of these instants, an observation vector yk ∈ RNy is
acquired. Formally, we can generalise the 3D-Var functional (1.41) to

J(x) =
1

2

(
x0 − xb

0

)⊤
B−1

0

(
x0 − xb

0

)
+

1

2

K∑
k=0

(yk −Hkxk)
⊤R−1

k (yk −Hkxk) . (3.1)

This functional is defined under the constraint that the state vectors {xk}k=0,...,K (from
which J depends) form an admissible trajectory of the system state, that is to say:

for k = 0, . . . ,K − 1 : xk+1 = Mk+1(xk). (3.2)

It is momentarily assumed that Mk ≜ Mk is linear. Quite often, a background information
does not exist for the full trajectory (though the assumption is currently being studied by
researchers). However, a background of the initial state of the partial trajectory is very
often used. Let us assume that its expectation is xb

0 and its error covariance matrix is B0.

The straightforward way to introduce the model constraint in the cost function is to in-
troduce Lagrange multipliers {Λk}k=1,...,K , where Λk ∈ RNx . The associated Lagrangian
looks like

L(x,Λ) = J(x) +
K∑
k=1

Λ⊤
k (xk −Mk xk−1) . (3.3)

This formalism is elegant. Besides, it is quite practical when the variational formalism is in
the continuous time limit (time step tk+1 − tk −→ 0), but with no significant added value
in the discrete case, where a straightforward reasoning (without the Λk) is as efficient as
the Lagrangian approach can be. Indeed, in the time discrete framework, the state variable
at time tk, xk can be explicitly written in terms of the initial value x0, as the product of
the resolvent matrices applied to the initial state, i.e.

xk = MkMk−1...M1 x0. (3.4)
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Figure 3.2: 4D-Var data assimilation compared to data assimilation with a Kalman filter.

Note that, with a continuous time model, the state variables are solutions of a system of
ordinary differential equations that are less tractable. As a consequence, the functional
(3.1) under constraints is an effective functional of x0 that can now be minimised with
respect to x0. In order to efficiently minimise it, we wish to compute the gradient of J
with respect to the initial vector x0. We introduce:

dk = yk −Hk [MkMk−1...M1] x0 and ∆k = R−1
k dk. (3.5)

dk is an innovation vector while ∆k is a normalised innovation vector . For the sake
of simplicity, we leave aside the background term in J(x) because such term has already
been studied in the optimal interpolation framework, and it is easy to add its contribution
afterwards. We have:

δJ(x0) = δ

{
1

2

K∑
k=0

d⊤
k R

−1
k dk

}

=
1

2

K∑
k=0

δd⊤
k R

−1
k dk +

1

2

K∑
k=0

d⊤
k R

−1
k δdk

=
K∑
k=0

(δdk)
⊤R−1

k dk

= −
K∑
k=0

(Hk [MkMk−1...M1] δx0)
⊤∆k

= −
K∑
k=0

δx⊤
0

[
M⊤

1 M
⊤
2 ...M

⊤
k−1M

⊤
k

]
H⊤

k ∆k. (3.6)

M. Bocquet



34 A generalised variational formalism: 4D-Var

We obtain the gradient of the function with respect to x0

∇x0J = −
K∑
k=0

[
M⊤

1 M
⊤
2 ...M

⊤
k−1M

⊤
k

]
H⊤

k ∆k

= −
(
H⊤

0 ∆0 +M⊤
1

[
H⊤

1 ∆1 +M⊤
2

[
H⊤

2 ∆2 + ...+
[
M⊤

KH⊤
K∆K

]
...
]])

. (3.7)

This last form of the gradient, which is a Horner factorisation , provides a means to
compute it at a lower numerical cost.

1. We first compute the xk recursively thanks to the resolvent matrix Mk and the initial
variable x0.

2. Then one computes the normalised innovation vectors ∆k = R−1
k (yk −Hkxk) that

we store.

3. We then define an adjoint state variable x̃k ∈ RNx . It is defined at the final
instant by x̃K = H⊤

K∆K . Knowing x̃k+1, we obtain x̃k using

x̃k = H⊤
k ∆k +M⊤

k+1x̃k+1. (3.8)

One can move back in time recursively, back to x̃0.

4. Finally, we obtain ∇x0J = −x̃0.

To compute the adjoint state variable backward in time, it is necessary to compute the ad-
joint operator of the resolvent matrices Mk. This seems trivial when Mk happens to be a
matrix, even a large one since computing its adjoint amounts to taking its transpose. How-
ever, in practice, the system’s evolution is computed from a numerical code of several dozen
of thousand of lines. Hence, we need to compute the (formally well-established) adjoint of
this computer programme. This adjointisation represents a technical and mathematical
hardship. Today, it is common to resort to automatic differentiation programmes (see
chapter 15 in Blayo et al. (2015) by L. Hacoët) which, from the code of Mk, yield the
code of M⊤

k . Examples of such programmes are: TAPENADE by INRIA (the code to
be differentiated can be submitted online and its adjoint code will be returned), TAF (a
famous commercial product), but also OpenAD, ADIFOR, ADIC, ADOL-C, etc. More
recently, deep learning softwares such as TensorFlow (Google), PyTorch (Facebook) or
Theano (University of Montreal) provide adjoint differentiation tools (coined retroprop-
agation) for their neural networks numerical representations. Julia, a recent computer
science oriented language, lends itself much more easily to automatic differentiation.

Gradient with background term

Accounting for the background term in the cost function is easy; the gradient becomes:

∇x0J = B−1
0 (x0 − xb

0)−
K∑
k=0

M⊤
k, 0H

⊤
k R

−1
k (yk −HkMk, 0x0) , (3.9)

where for k > l ≥ 0, we have noted Mk , l = MkMk−1 · · · Ml+1. By convention, we choose
Mk, k = I. By extension, we impose Mk , l = M−1

l , k = M−1
k+1M

−1
k+2 · · · M−1

l for l > k ≥ 0.
Owing to this convention, we have

∀ k, l 0 ≤ k, l ≤ n : xk = Mk , l xl. (3.10)
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3.1.1 What happens when the forward model or the observation model
are nonlinear?

In that case, we can follow the method of section 1.3.3 used so far within the 3D-Var
approach. As before, we denote M the tangent linear of M with respect to x. One can
possibly indicate the point where the tangent linear is computed: M(x0) for instance when
evaluated at x0.

The computation of the gradient is not as simple as in the linear case. Mainly, the calcu-
lation of δdk is modified into (Leibnitz’s rule)

δdk = −Hk(xk)Mk(xk−1)Mk−1(xk−2) · · ·M1(x0) δx0. (3.11)

Then the gradient reads

∇x0J = −
K∑
k=0

[
M⊤

1 (x0)M
⊤
2 (x1) · · ·M⊤

k−1(xk−2)M
⊤
k (xk−1)

]
H⊤

k (xk)∆k. (3.12)

When considering complex and nonlinear evolution or observation operators, it turns out
that we will need not only to know how to derive an adjoint but also the differential (the
tangent linear) of the code in the first place. This is again called automatic differenti-
ation .

3.2 Solution of the variational problem

Our first objective is to minimise the cost function J(x). Later, we will show that this
variational approach can be equivalent to the Kalman filter under certain conditions.

3.2.1 Solution with respect to x0

We can obtain a solution to the minimisation problem of J with respect to x0 by using
our expression of the gradient and solving ∇x0J = 0. To do so, one can define the Hessian
of J over the time interval [t0, tK ], which will be denoted HK , 0. If the cost function is
quadratic (which is what we assumed so far), the Hessian matrix does not depend on x0

and is formally easily obtained from the gradient:

HK , 0 = B−1
0 +

K∑
k=0

M⊤
k , 0H

⊤
k R

−1
k HkMk , 0 . (3.13)

With these notations, the solution xa
0 is easily obtained from (3.9)

xa
0 = xb

0 −H−1
K , 0∇x0J(x

b
0). (3.14)

This is the Newton solution to the minimisation problem of a quadratic functional.

If the model is nonlinear and the cost-function is non-quadratic, Eq. (3.13) would turn
out to only be an approximation of the exact Hessian since second-order derivatives of the
model would appear in the exact Hessian. In that case, the Newton method is rather called
the Gauss-Newton method.
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The analysis error of this estimate is given by the following error covariance matrix

Pa
0 = E

[
(xa

0 − x0) (x
a
0 − x0)

⊤
]
. (3.15)

Hence, we obtain

(Pa
0)

−1 = HK , 0 = B−1
0 +

K∑
k=0

M⊤
k , 0H

⊤
k R

−1
k HkMk , 0 . (3.16)

Solution with respect to xk

When the evolution model is perfect, the (true) values of the system state xk are all
connected thanks to the resolvent matrices Mk, l. Performing the analysis on the initial
condition x0 is therefore equivalent to performing the analysis on any xj , j ∈ [0,K]. To
make it clearer, one can rewrite the cost function (3.1) with respect to xj (K ≥ j ≥ 0)
and not x0 anymore following

J(x) =
1

2

(
M0 , j

(
xj − xb

j

))⊤
B−1

0 M0 , j

(
xj − xb

j

)
+
1

2

K∑
k=0

(yk −HkMk , j xj)R
−1
k (yk −HkMk , j xj) , (3.17)

using the convention (3.10). We observe that M⊤
0 , j B

−1
0 M0 , j =

(
Mj , 0B0M

⊤
j , 0

)−1
≜

B−1
j . The calculation of the gradient with respect to xj follows

−∇xjJ = B−1
j

(
xb
j − xj

)
+

K∑
k=0

M⊤
k , j H

⊤
k R

−1
k (yk −HkMk , j xj) . (3.18)

This leads to the analysis defined by ∇xjJ(x) = 0,

xa
j = xb

j −H−1
K , j∇xjJ(x

b
j ), (3.19)

where the Hessian is

HK , j = B−1
k +

K∑
k=0

M⊤
k , j H

⊤
k R

−1
k HkMk , j . (3.20)

The related analysis error covariance matrix is

Pa
k = E

[(
xa
j − xj

) (
xa
j − xj

)⊤]
. (3.21)

By analogy with the result (1.46), we infer

(
Pa

j

)−1
= HK , j = B−1

j +
K∑
k=0

M⊤
k , j H

⊤
k R

−1
k HkMk , j . (3.22)

This means that the confidence matrix at xa
j is the sum of the confidence of the background

and of the confidence attached to the observations propagated by the inverse evolution
model back to time t0.
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3.3 Properties

3.3.1 Propagation of the analysis error

It is easy to check that
M⊤

j , l HK , j Mj , l = HK , l. (3.23)

Because of HK , k = (Pa
k)

−1, it leads to

Pa
l = Ml , j P

a
j M

⊤
l , j . (3.24)

This describes how the analysis error is propagated within the (strong constraint) 4D-Var
formalism. Obviously, it is different from the error propagation of the Kalman filter. It
originated from the fact that the error analysis in the Kalman filter is causal, meaning that
the error depends on the observations before the analysis time, when the 4D-Var analysis
error is not causal: the error analysis might depend on future observations.

This relates to one of the weakest point of 4D-Var: it is not simple to estimate the posterior
uncertainty.

3.3.2 Transferability of optimality

We now have the main tools to demonstrate one of the most appealing property of the
minimisation of the functional. We consider a data assimilation window [t0, tK ]. It is
split into two periods [t0, tm] and [tm, tK ] with m an integer between 0 and K. One can
minimise the associated cost function following two paths:

1. The full cost function is minimised over the full interval [t0, tK ].

2. The minimisation is carried out in two steps. We first minimise the cost function on
the interval [t0, tm]. The result is a solution xa

m defined at tm, with an error covariance
matrix Pa

m. Then, a second minimisation is carried out on interval [tm, tK ], but using
the outcome of the first step, xa

m and Pa
m, in a background term in the second cost

function.

We would like to show that the two approaches are equivalent.

From what precedes, the result of path (1) is the outcome of the optimisation of functional
(3.1) with respect to x0

J(x0) =
1

2

(
x0 − xb

0

)⊤
B−1

0

(
x0 − xb

0

)
+
1

2

K∑
k=0

(xk −HkMk , 0x0)
⊤R−1

k (yk −HkMk , 0x0) . (3.25)

We can decompose the same cost function into

Jm, 0(x0) =
1

2

(
x0 − xb

0

)⊤
B−1

0

(
x0 − xb

0

)
+
1

2

m∑
k=0

(yk −HkMk , 0x0)
⊤R−1

k (yk −HkMk , 0x0) , (3.26)
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and

JK ,m(x0) =
1

2

K∑
k=m+1

(yk −HkMk , 0x0)
⊤R−1

k (yk −HkMk , 0x0) , (3.27)

so that we have
J(x0) = Jm, 0(x0) + JK ,m(x0). (3.28)

We remark that the functional Jm,0(x0) is the cost function attached to the first step of
path (2). Let xa

0 and Pa
0 be the result of this analysis. Because of the assumptions of

linearity of the operators, Jm,0(x0) is quadratic and coincides with its second-order Taylor
expansion at any point, in particular at xa

0. We have

Jm, 0(x0) = Jm, 0(x
a
0)+(∇x0Jm, 0(x

a
0))

⊤ (x0 − xa)+
1

2
(x0 − xa)⊤Hm, 0 (x0 − xa) . (3.29)

By definition, ∇x0Jm, 0(x
a
0) = 0. As a consequence, minimising Jm, 0 is equivalent to

minimising the following square

C(x0) =
1

2
(x0 − xa

0)
⊤ (Pa

0)
−1 (x0 − xa

0) , (3.30)

with

xa
0 = xb

0 −H−1
m, 0∇x0J(x

b
0)

(Pa
0)

−1 = Hm, 0 = B−1
0 +

m∑
k=0

M⊤
k , 0H

⊤
k R

−1
k HkMk , 0 , (3.31)

since Jm, 0(x0) = Jm, 0(x
a
0) + C(x0). Hence

J(x0) = Jm, 0(x
a
0) + C(x0) + JK ,m(x0). (3.32)

But C(x0) is exactly the background term of the second step of path (2). The result of
the global minimisation of J(x0) over [t0, tK ] with respect to x0 coincides with the result
of the minimisation of the two-step procedure with a background term in the second step
to inform about the result of the first step. Note that we could have minimised over xK

as well, xm, or any other xk. This property is called transferability of optimality .
However, be aware that there is no identity between

• the outcome of the analysis through path (1) when focused on state vector xa
m defined

at tm, and

• the outcome of the intermediary analysis at time tm obtained from the first step of
path (2).

Indeed, the analysis of an intermediary step through path (1) uses all observations including
the ones posterior to the intermediary step, while the analysis of the same intermediary
step through path (2), after its first step, ignores future observations.

Introduction to data assimilation



3.4 Minimisation algorithms for the cost functions 39

3.3.3 Equivalence between 4D-Var and the Kalman filter

Here, we justify the use of cost function (3.1) by showing that the final result xaK at tK
is the same as the sequential analysis of the Kalman filter at tK . We focus on the data
assimilation time window [t0, tK ]. For the two methods to be on equal footing, we assume
that they use the same background statistics xb

0 and Pb
0 at the beginning of the window,

i.e. at t0.

We previously showed the transferability of optimality of the variational formalism by
splitting the time interval. We can subdivide these two intervals and again invoke the
transferability of optimality. To the extreme, we can split [t0, tK ] into the K subintervals
[tk, tk+1] with 0 ≤ k ≤ K − 1. But the minimisation of Jk , k+1 coincides with the 3D-
Var approach, which is equivalent to optimal interpolation in the linear operator context.
However, each Kalman filter analysis is based on optimal interpolation! As a result, the
variational approach by subdividing interval [t0, tK ] into K segments [tk, tk+1] with 0 ≤
k ≤ K−1, is equivalent to the Kalman filter analysis. Be aware that this is not equivalent
to the optimisation of J over the full [t0, tK ]. Nevertheless, as a result of what precedes,
we can claim that the analysis at time tK by the global optimisation coincides with the
optimisation when subdividing into K subintervals and hence to the Kalman filter.

3.4 Minimisation algorithms for the cost functions

Let us now discuss one practical but essential aspect of the variational methods: the
minimisation of the cost functions. Suppose we want to minimise the cost function J(x).
If J is quadratic and strictly convex, it has a unique global minimum in RNx . However,
more generally, J can exhibit several local minima. Note that if the problem is physically
well posed, one expects that a global minimum exists. Determining all of these minima is
a very difficult task. Here, we focus on finding the minimum, or one of the minima. Let us
denote g(x) the gradient of J(x), and H(x) is the related Hessian matrix. A way to test
the optimisation algorithms is to apply them to the basic case of a quadratic cost function,

JQ(x) =
1

2
x⊤Qx+ b⊤x, (3.33)

where Q is a positive definite matrix. Hence, JQ is strictly convex.

3.4.1 Descent algorithms

The minimisation algorithms start at a point x0 ∈ RNx and build a sequence of points xk

which is meant to converge to a local minimum. x0 typically is in the basin of attraction
of the local minimum. At step k of the algorithm, we determine a direction dk ∈ RNx

which is characteristic of the method. This direction of exploration is used to define the
next point of the sequence

xk+1 = xk + λkdk, (3.34)

where λk is a positive real number, λk ∈ R+. An optimal λk is obtained from a one-
dimensional minimisation (line search), along the affine direction defined by xk and dk.
The optimal λk results from the minimisation of

φk(λ) ≜ J (xk + λdk) . (3.35)
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Since it is a minimisation problem, we wish to have

φ′
k(0) ≜ ∂λφk(0) = g(xk)

⊤dk < 0. (3.36)

Hence, for dk to be a descent direction, we must have g(xk)
⊤dk < 0.

Steepest descent, conjugate gradient and Newton-Raphson methods

We can choose for dk the direction of steepest descent, yielding the steepest descent
method , dk = −g(xk), which is pointed at by minus the gradient of the cost function.
We can hope for a better algorithm when the dk better explores the minimisation space
(we have no choice for the dk in the steepest descent method).

Before considering the full nonlinear case, let us focus on the quadratic case Eq. (3.33).
We can impose the {dj}0≤j≤k to be Q-conjugate, i.e. they are mutually orthogonal with
respect to the quadratic form defined by Q, i.e., d⊤

j Qdl = 0 whenever j ̸= l. This
construction is analogous to the Gram-Schmidt orthogonalisation. It ensures that the
solution can be obtained in less than Nx+1 steps (recall Nx is the dimension of the system
state) if the machine precision is infinite. Moreover, it is clear that in the quadratic case,
we can obtain an explicit solution for λk (given below). This method is known as the
conjugate gradient .

This method also applies to the nonlinear case. In this case, the conjugation is only
approximate and the solution usually requires more than Nx + 1 steps. The several im-
plementations (Hestenes-Stiefel, Polak-Ribière and Fletcher-Reeves) of this generalisation
are distinguished by the explicit formula for λk. The crucial point is that none of these
methods make use of the Hessian of the cost function.

In spite of the elegance and sophistication of the conjugate gradient and variants, it may
be more efficient to use a Newton-Raphson method which may offer a faster convergence
rate. Let us explain its main idea. In a neighbourhood of xk, we wish to approximate the
cost function J by a quadratic cost function.

J(x) = J(xk) + g(xk)
⊤ (x− xk) +

1

2
(x− xk)

⊤H(xk) (x− xk)︸ ︷︷ ︸
q(x)

+o(∥ x− xk ∥2). (3.37)

An estimation of the local minimum is given by the minimum of the local quadratic ap-
proximation q(x), denoted xk+1, that we obtain by solving ∇q(x) ≃ 0, i.e.

0 ≃ ∇q(x) = g(xk) +H(xk)(x− xk). (3.38)

If the Hessian is invertible, a better idea of the minimum point x is given by

xk+1 = xk −H(xk)
−1g(xk). (3.39)

That is to say
dk = −H(xk)

−1g(xk). (3.40)

This corresponds to making a choice not only for dk ∈ RNx , but also for λk ∈ R+ which is
taken to be 1. It can be shown that the method is converging provided the starting point
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x0 is close enough to a local minimum. Applied to a quadratic cost function, this method
is qualified as second-order because

xk+1 − x = O(∥ xk − x ∥2), (3.41)

assuming x is the solution to the minimisation problem.

This method is meant to be very efficient. It has nevertheless the major drawback that
it requires to compute the Hessian and its inverse. For a nonlinear problem, the Hessian
must (in principle) be recomputed at each iteration since it is point-dependent. For large
dimensional problems, of particular interest to us, this could be a prohibitive computation.

3.4.2 Quasi-Newton algorithm

An alternative minimisation technique consists in using at step k a matrix Hk that could
easily be computed, and behaves similarly to the inverse of the Hessian in the subspace
generated by the gradient g(xk), that we shall also denote gk, so that we could write
dk = −Hkgk. Please bear in mind the abrupt change of notation: Hk now designates an
approximation of the inverse of the Hessian (this is customary).

The idea is to build up Hk along with the iterations. The directions of RNx that are
explored when we compute xk+1 knowing xk are ∆xk = xk+1 − xk, and ∆gk = gk+1 −
gk, since we only have access to the xk and to the gradients ∆gk. But, a simple exact
integration shows that ∆xk and ∆gk are related via{∫ 1

0
dλ∇2J(x+ λdk)

}
∆xk = ∆gk . (3.42)

The left-hand side
∫ 1
0 dλ∇2J(x + λdk) is the mean of the Hessian along the trajectory

∆xk. The conclusion of this argument is that we can extract from ∆gk and ∆xk some
information about the Hessian. Since this information is of low rank, the inverse of the
Hessian needs to be built progressively, iteration after iteration.

Building on this heuristic argument, we wish that the sequence Hk satisfies

∀ k ≥ 0, Hk (gk+1 − gk) = xk+1 − xk. (3.43)

This condition makes the algorithm a quasi-Newton method. We also wish Hk to be
positive semi-definite. Indeed, we have

φ′
k(0) = g⊤

k dk = −g⊤
k Hkgk, (3.44)

so that the positivity of Hk is sufficient to ensure the descent criterion φ′
k(0) ≤ 0.

In spite of their sophistication, the quasi-Newton methods are very popular, because they
combine convergence speed while limiting the algorithmic complexity (no explicit com-
putation of the Hessian). Besides, on the shelf quasi-Newton softwares are available and
widely distributed. The generic quasi-Newton method is displayed in algorithm 3.4.2.

The sequence Hk must satisfy the quasi-Newton condition, but this condition does not
suffice to fully define it. The complete specification of the sequence distinguishes between
variants of the quasi-Newton method.
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Generic quasi-Newton algorithm
1. We start at x0 at time k = 0

and we choose an initial symmetric matrix for H0.
2. For k = 0, 1, 2, . . .,

• If gk = 0, the algorithm ends, otherwise

dk = −Hkgk

• We compute (line search)

λk = argmin J (xk + λdk) for λ ≥ 0

then
xk+1 = xk + λkdk

• Build Hk+1 using Hk and

∆xk = xk+1 − xk and ∆gk = gk+1 − gk

Figure 3.3: The generic quasi-Newton scheme.

Application to a quadratic function

Let us have a look at the way a quasi-Newton method works in the linear case, i.e. when
the cost function is quadratic JQ(x) = 1

2x
⊤Qx+ b⊤x. The generic algorithm of a quasi-

Newton minimisation in the linear case, is given in algorithm 3.4.

The value of λk is the outcome of the minimisation of

J (xk + λdk) =
1

2
(xk + λdk)

⊤Q (xk + λdk) + b⊤ (xk + λdk) , (3.45)

of obvious exact solution:

λk = − g⊤
k dk

d⊤
k Qdk

,

with gk = Qxk + b.

Q-Conjugation

A remarkable property of the generic quasi-Newton algorithm when applied to the quadratic
functional is that the directions dk are mutually Q-conjugate.

3.4.3 A quasi-Newton method: the BFGS algorithm

In practice, one of the most efficient quasi-Newton implementation has been proposed in
1970 by Broyden, Fletcher, Goldfarb and Shanno, hence the name of the method: BFGS .
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Generic quasi-Newton algorithm (linear case)
1. We start from x0 at time k = 0,

and a symmetric matrix H0.
2. For k = 0, 1, 2, . . .,

• If gk = 0, the algorithm ends, otherwise

dk = −Hkgk

• We compute

xk+1 = xk + λkdk where λk = − g⊤
k dk

d⊤
k Qdk

• Build Hk+1 from Hk and

∆xk = xk+1 − xk and ∆gk = gk+1 − gk

Figure 3.4: The generic quasi-Newton scheme in the linear case.

The sequence of the matrices Hk is defined by the following matrix recursive formula

Hk+1 = Hk +

(
1 +

(∆gk,Hk∆gk)

(∆gk,∆xk)

)
∆gk(∆gk)

⊤

(∆xk,∆gk)

−Hk∆gk(∆xk)
⊤ +

(
Hk∆gk(∆xk)

⊤)⊤
(∆gk,∆xk)

. (3.46)

Hk+1 = Hk +

(
1− ∆xk∆gk

⊤

(∆gk,∆xk)

)
Hk

(
1− ∆gk(∆xk)

⊤

(∆gk,∆xk)

)
+

∆xk(∆xk)
⊤

(∆gk,∆xk)
. (3.47)

The method is rank-2 because

rank (Hk+1 −Hk) ≤ 2. (3.48)

It is easy to check that the method is quasi-Newton, i.e. it satisfies Eq. (3.43). Moreover,
we check that if Hk is positive semi-definite, then Hk+1 is also positive semi-definite.

Provided that the starting point x0 is not too far away from the argument x of the minimum
of the cost function, the convergence of the BFGS algorithm is superlinear in the nonlinear
case, i.e.

lim
k→∞

∥ xk − x ∥
∥ xk+1 − x ∥ = 0. (3.49)

With stronger requirements (regularity), classes of implementation of the quasi-Newton
methods quadratically converge, even in the nonlinear case.

Much more information about numerical optimisation, iterative minimisation schemes in-
cluding conjugate-gradient and quasi-Newton schemes can be found in Nocedal and Wright
(2006).
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3.5 Weak-constraint 4D-Var

The variational analogue of the Kalman filter that incorporates model error is given by the
weak-constraint 4D-Var of cost function

J(x) =
1

2

(
x0 − xb

0

)⊤
B−1

0

(
x0 − xb

0

)
+

1

2

K∑
k=0

(yk −Hkxk)
⊤R−1

k (yk −Hkxk)

+
1

2

K∑
k=1

(xk −Mkxk−1)
⊤Q−1

k (xk −Mkxk−1) . (3.50)

Obviously, this method is numerically very costly as one needs to optimise this cost function
over all x0,x1, . . . ,xK . A proper modelling of the not so-well known Qk is also needed.
Besides, nothing guarantees that it can properly account for any kind of model error. That
is why, in spite of being contemplated very early in the data assimilation field, it is still
barely used. However, it has more recently drawn attention because it is amenable to a
parallelised implementation as opposed to the strong constraint 4D-Var.

The formalism can also be simplified. For instance, one can consider a forcing weak-
constraint 4D-Var where model error is given by a systematic bias which does not vary
over the time window. The associated cost function reads

J(x) =
1

2

(
x0 − xb

0

)⊤
B−1

0

(
x0 − xb

0

)
+

1

2

K∑
k=0

(yk −Hkxk)
⊤R−1

k (yk −Hkxk)

+
1

2

(
η − ηb

)⊤
Q−1

(
η − ηb

)
, (3.51)

under the constraints:

for k = 0, . . . ,K − 1 : xk+1 = Mk+1(xk) + η. (3.52)

Hence, compared to the strong-constraint 4D-Var, only the model error vector η ∈ RNx

has been added to the control variables. J(x) is actually a function of the x0 and η.
This approximation of the weak-constraint 4D-var is in operation at the ECMWF for the
stratosphere where the meteorological forecast model (IFS) is known to have systematic
biases.
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Chapter 4

Nonlinear data assimilation

We will illustrate the performance of the algorithms introduced in this chapter with an
anharmonic oscillator and some additional model error. That is why we use again the
nonlinear oscillator of chapter 2 to which we add some noise corresponding to some model
error. This model error, an additive noise, weakens the predictability of the system:

x0 = 0 , x1 = 1 and for 1 ≤ k ≤ K xk+1 − 2xk + xk−1 = ω2 xk + λ2 x3k + ξk. (4.1)

We have chosen the following parameters: ω = 0.035, λ = 3.10−5. The variance of model
error is 0.0025 while the variance of the observation error is 49. The initial condition is
x0 = 0 and x1 = 1. The system is iterated 10000 times.

4.1 The limitations of the extended Kalman filter

Let us look at the typical behaviour of an extended Kalman filter applied to a strongly
nonlinear system. Let us experiment with the stochastic anharmonic oscillator described
above. At first, we choose the observation to be performed every 50 timesteps. This yields
the typical run shown in figure 4.1. where the extended Kalman filter succeeds in tracking
the system’s state.

Secondly, we choose to assimilate an observation every 58 iterations, at a somewhat lower
frequency. The behaviour of the extended Kalman filter is illustrated in figure 4.2. We
see that the filter ultimately diverges because it does not have enough information on the
system state’s trajectory and because the error propagation is approximated by the tangent
linear model in between two analysis steps.

To reduce the impact of the tangent linear approximation, we could resort to higher order
extended Kalman filters, which better handle the nonlinearity of the model. However,
these require the use of not only the tangent linear but also an Hessian, which would be
very costly to implement (in terms of CPU and memory). This is a stringent limitation of
these methods for high dimensional systems.

To understand and improve the performance of the filters with strongly nonlinear dynami-
cal systems, it would be interesting to define a data assimilation method able to account for
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48 Nonlinear data assimilation

Figure 4.1: Data assimilation with a stochastic anharmonic oscillator, using an extended
Kalman filter. The observation frequency is one observation every 50 timesteps.

all statistical moments of the state distribution. Indeed a nonlinear dynamics propagates
the statistical moments of the system state in a non-trivial fashion as opposed to linear
dynamics.

4.2 The ultimate data assimilation method?

So far, we have tried to solve the following problem: given an a priori but partial and
imperfect knowledge of the system and a fresh observation set, what is, in the mean square
sense, the optimal system state estimate and what is the variance of the analysis error?

Yet, the question could be more general. We could reformulate the problem in terms of
probabilities. We do not limit ourselves to the expectation and covariances of the variable
distributions but we work on all statistical moments (Tarantola and Valette, 1982).

Provided we know the probability density of the background as well as that of the obser-
vations, what is the probability density of a system state? A opposed to the approaches
of the previous chapters, there is not any such a priori criterion such as the least squares
from which we could define an estimator for the system state and its error. Instead, we
will need to choose a criterion that defines optimality, which yields a specific estimator.

4.2.1 Assimilation of an observation

Let us consider a very general observation equation

y = H(x,v), (4.2)

where the observation operator H could be nonlinear. We assume that we know a priori the
probability density function (pdf) of the distribution of x, i.e. the pdf of the background,
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Figure 4.2: Data assimilation with a stochastic anharmonic oscillator, using an extended
Kalman filter. The observation frequency is one observation every 58 timesteps which is
insufficient and the filter ultimately diverges.

which is denoted pX(x). Besides, the pdf of the noise, denoted pV (v) is also assumed to
be known. We wish to know the probability density function of x, knowing the value of
the observation vector y, i.e. the conditional pdf of x, knowing y, denoted pX|Y (x|y). To
that goal, let us consider the joint pdf of the state and the observation vector, pX,Y (x,y).
We can easily decompose it in two ways:

pX,Y (x,y) = pX|Y (x|y)pY (y) = pY |X(y|x)pX(x). (4.3)

This yields the infamous Bayes’ rule (that was later rediscovered by Pierre-Simon Laplace
in a more general form than inially proposed by Thomas Bayes), we obtain:

pX|Y (x|y) = pY |X(y|x)pX(x)

pY (y)
. (4.4)

which determines pY . Computing this latter term corresponds to a normalisation of the
pdf with respect to x:

pY (y) =

∫
dx pY |X(y|x)pX(x). (4.5)

In practice it is often unnecessary to compute this normalisation since it does not depend
on x.

4.2.2 Estimation theory and BLUE analysis

To convince ourselves of the richness of this probabilistic standpoint, let us check that it is
consistent with the optimal interpolation (BLUE). To this end, the observation equation
is simplified into

y = Hx+ v, (4.6)
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where the observation operator H is assumed linear here. We also assume that x is dis-
tributed according to a Gaussian distribution N(x,P), that is to say according to the
(normalised) pdf

pX(x) =
1

(2π)Nx/2|P|1/2 exp
(
−1

2
(x− x)⊤P−1(x− x)

)
, (4.7)

with |P| denoting the determinant of the square matrix P. This constitutes the background
pdf of x. Since v is distributed according to N(0,R), independent from that of x, the
conditional probability of y, knowing x, is

pY |X(y|x) = 1

(2π)Ny/2|R|1/2 exp
(
−1

2
(y −Hx)⊤R−1(y −Hx)

)
. (4.8)

The calculation of pY (normalisation of the product of the two previous densities) consists
in convolving two Gaussian pdfs. As a consequence, the resulting density is also Gaussian
in y. It is easy to compute its expectation xy = E [y] and its variance Py. Indeed,

xy = E [Hx+ v] = Hx,

Py = E
[
(y − xy) (y − xy)

⊤
]
= E

[
(H(x− x) + v) (H(x− x) + v)⊤

)
= HE

[
(x− x)(x− x)⊤

]
H⊤ + E

[
vv⊤

]
= HPH⊤ +R. (4.9)

This entirely characterises the distribution of y

pY (y) =
1

(2π)Ny/2|HPH⊤ +R|1/2 exp
(
−1

2
(y −Hx)⊤(HPH⊤ +R)−1(y −Hx)

)
.

(4.10)

Using (4.10), (4.8) and Bayes’ rule (4.4), we obtain the targeted conditional density:

pX|Y (x|y) =
|HPH⊤ +R|1/2

(2π)Nx/2|P|1/2|R|1/2 ×

exp

(
−1

2
(y −Hx)⊤R−1(y −Hx)− 1

2
(x− x)⊤P−1(x− x)

+
1

2
(y −Hx)⊤(HPH⊤ +R)−1(y −Hx)

)
. (4.11)

Factorising the argument of the exponential according to x, we obtain

pX|Y (x|y) =
|HPH⊤ +R|1/2

(2π)Nx/2|P|1/2|R|1/2 exp
(
−1

2
(x− x⋆)⊤P−1

⋆ (x− x⋆)

)
, (4.12)

with
P−1

⋆ = P−1 +H⊤R−1H and x⋆ = P⋆(H
⊤R−1y +P−1x). (4.13)
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4.2.3 Choosing an estimator

Then one needs to choose an estimator . That is, one needs to make rigorous the subjective
concept of most likely value of an analysis of the system state x, knowing the observations y.
This estimator is to be defined from the conditional pdf pX|Y . We would like the estimator
to be unbiased. In the present case, since the distributions are Gaussian, all reasonable
choices lead to the same estimator. However, with more general distributions, we would
have to distinguish between the minimum variance estimator and the maximum a
posteriori which corresponds to the maximum of the pdf pX|Y . But other choices are
possible.

In the present case, the two coincide with the estimator x̂ = E [x|y], which is easily read
from the pdf. Now, using the optimal gain K∗ , we obtain

x̂ = (P−1 +H⊤R−1H)−1(H⊤R−1y +P−1x)

= K∗y + (P−1 +H⊤R−1H)−1P−1x

= K∗y + (I−K∗H)x

= x+K∗(y −Hx), (4.14)

where we used relationships (1.26) and (1.24). This result should be compared with (1.18).
The result of this probabilistic calculation hence coincides with the result of BLUE, as-
suming xb = x.

4.3 Sequential assimilation and probabilistic interpretation

Let us consider a sequential data assimilation scheme. We wish to study the scheme
using probability theory following the ideas of the previous section. This is the Bayesian
filtering problem. Let us denote Zk, the set of all past observation vectors from t0 to tk,
i.e.

Zk = {zk, zk−1, · · · , z0}. (4.15)

We wish to compute the conditional pdf of xk knowing Zk, denoted p(xk|Zk). For the sake
of simplicity, we give up the pdf index. Therefore, they will all be denoted p, and only
their argument can help discriminate them.

4.3.1 Forecast step

In the forecast step, one wishes to compute the pdf p(xk+1|Zk), knowing the pdf p(xk|Zk).
Without any particular restriction, we have

p(xk+1|Zk) =

∫
dxk p(xk+1|xk) p(xk|Zk). (4.16)

A very general stochastic modelling of the dynamical system would be

xk+1 = F (xk,wk), (4.17)

where wk is meant to be a white noise (uncorrelated in time) of density pW . Thus we have

p(xk+1|xk) =

∫
dwk pW (wk) δ (xk+1 − F (xk,wk)) , (4.18)
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where δ is the Dirac distribution.

Hence, the densities change between tk and tk−1 according to

p(xk+1|Zk) =

∫
dxk dwk pW (wk) p(xk|Zk) δ (xk+1 − F (xk,wk)) . (4.19)

When the noise is additive, i.e. if (4.17) becomes

xk+1 = M(xk) +wk, (4.20)

the convolution of densities simplifies into

p(xk+1|Zk) =

∫
dxk pW (xk+1 −M(xk)) p(xk|Zk). (4.21)

When model error is zero, we can further simplifies since

pW (xk+1 −M(xk)) = δ(xk+1 −M(xk)). (4.22)

In that case:

p(xk+1|Zk) =
p
(
(Mk)

−1(xk+1)|Zk

)
|(M ′

k) ◦M−1
k (xk+1)|

, (4.23)

where |O| is the determinant of O.

4.3.2 Analysis step

Once a new observation vector is acquired, an analysis is performed. A general observation
equation is

zk = H(xk,vk), (4.24)

where vk is a noise of arbitrary distribution. Using Bayes’ rule, we obtain:

p(xk|Zk) = p(xk|zk,Zk−1) = p(zk|xk,Zk−1)
p(xk|Zk−1)

p(zk|Zk−1)
. (4.25)

It is slightly more elaborated than formula (4.4). p(xk|Zk−1) is supposed to be known
since it is the outcome pdf of the forecast from tk−1 to tk. We remark that we have

p(zk|Zk−1) =

∫
dxk p(zk|xk,Zk−1) p(xk|Zk−1), (4.26)

which looks like the normalisation of the targeted pdf. In summary

p(xk|Zk) =
p(zk|xk,Zk−1) p(xk|Zk−1)∫
dxk p(zk|xk,Zk−1) p(xk|Zk−1)

. (4.27)

If we assume the noise vk to be white in time, p(zk|xk,Zk−1) = p(zk|xk), since the knowl-
edge of p(zk|xk) is equivalent to that of the white noise at time tk, which is independent
from Zk−1. In that case, the previous formula simplifies into

p(xk|Zk) =
p(zk|xk) p(xk|Zk−1)∫
dxk p(zk|xk) p(xk|Zk−1)

. (4.28)

Provided we can afford the computations, these forecast and analysis steps are sufficient
to cycle the system’s state pdf and perform sequential data assimilation.
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4.3.3 Estimation theory and Kalman filter

Let us again assume the conditions of validity of the Kalman filter, i.e. the linearity of
operators. We would like to show that, essentially under these conditions, the estimation
theory yields the Kalman filter results. Hence, this is a particular implementation of the
previous forecast and analysis steps.

Forecast step The model equation (transition from tk to tk+1) is

xk+1 = Mk xk +wk, (4.29)

where wk is a Gaussian white noise of covariance matrix Qk. By construction, we have in
one hand

pW (xk+1 −Mkxk) =
1

(2π)Nx/2|Qk|1/2
exp

(
−1

2
(xk+1 −Mkxk)

⊤(Qk)
−1(xk+1 −Mkxk)

)
,

(4.30)
and

p(xk|Zk) =
1

(2π)Nx/2|Pa
k|1/2

exp

(
−1

2
(xk − xa

k)
⊤ (Pa

k)
−1 (xk − xa

k)

)
, (4.31)

in the other hand, with xa
k and Pa

k outcome of the analysis at time tk. Integral (4.21)
remains to be calculated. Again, we have to convolve two Gaussian distributions. The
calculation is formally equivalent to (4.7), (4.8) and (4.10). We obtain

p(xk+1|Zk) =
1

(2π)Nx/2|Pf
k+1|1/2

exp

(
−1

2
(xk+1 − xf

k+1)
⊤
(
Pf

k+1

)−1
(xk+1 − xf

k+1)

)
,

(4.32)
with

xf
k+1 = Mkx

a
k and Pf

k+1 = M⊤
k P

a
kMk +Qk. (4.33)

Analysis step: There is nothing to prove for the analysis step, since this part coincides
with the derivation of the BLUE analysis by estimation theory, which was described in
section 4.2.2.

Hence, we recover that estimation theory yields the Kalman filter in the linear case and
with Gaussian a priori statistics. A possible estimator is that of the maximum a posterior
(MAP).

4.4 Variational data assimilation and probabilistic interpre-
tation

Thinking in terms of probability, we wish that the nonlinear data assimilation system

xk+1 = Mk+1(xk) +wk

zk = Hk(xk) + vk, (4.34)

has a 4D-Var formulation over the interval [t0, tK ]. The models Mk and Hk could be
nonlinear. Model error noise wk as well as observation error vk are supposed to be Gaussian
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white noise, unbiased and with error covariance matrices Qk and Rk respectively. Their
probability density functions are

pW (wk) = N(0,Qk) and pV (vk) = N(0,Rk). (4.35)

Differently from the targeted pdf of sequential assimilation, we rather wish to compute
p(Xk|Zk), a Bayesian smoothing problem, with

Xk = {xk,xk−1, · · · ,x0}. (4.36)

This requires for us to adapt the probabilistic calculation of the sequential approach. First
of all, the Bayes’ rule gives

p(Xk|Zk) = p(Zk|Xk)
p(Xk)

p(Zk)
. (4.37)

Since we are only interested in the dependence in Xk of p(Xk|Zk), we will target the
following pdf p(Xk|Zk) ∝ p(Zk|Xk) p(Xk). It is clear that

p(Xk) = p(xk,Xk−1) = p(xk|Xk−1) p(Xk−1) = p(xk|xk−1)p(Xk−1), (4.38)

where we used the fact that the sequence of random variables Xk has the Markov property.
Moreover, we can simplify p(Zk|Xk):

p(Zk|Xk) = p(zk,Zk−1|Xk) = p(zk|Xk) p(Zk−1|Xk)

= p(zk|xk,Xk−1) p(Zk−1|xk,Xk−1)

= p(zk|xk) p(Zk−1|Xk−1). (4.39)

We infer that

p(Xk|Zk) ∝ p(Zk|Xk) p(Xk) = p(zk|xk) p(Zk−1|Xk−1) p(xk|xk−1) p(Xk−1)

∝ p(zk|xk) p(xk|xk−1) p(Zk−1|Xk−1) p(Xk−1)

∝ pV (zk −H(xk)) pW (xk −Mk(xk−1)) p(Zk−1|Xk−1) p(Xk−1). (4.40)

This recursive relationship is sufficient to determine the density p(Xk|Zk) taking into
account the hypotheses on the noise:

p(Xk|Zk) ∝

 k∏
j=0

pV (zj −Hj(xj))
k−1∏
j=0

pW (xj+1 −Mj+1(xj))

 p(x0)

∝ exp

−1

2

k∑
j=0

(zj −Hj(xj))
⊤R−1

j (zj −Hj(xj))

−1

2

k−1∑
j=0

(xj+1 −Mj+1(xj))
⊤Q−1

j (xj+1 −Mj+1(xj))

 p(x0). (4.41)

The probability density p(x0) defines the system state background at time t0. If we choose
the MAP as the estimator, we need to maximise the log-density (the argument of the
exponential). The negative log-density − ln p(Xk|Zk) is merely the 4D-Var cost function
(to be minimised!). This justifies the use of this functional in the 4D-Var formalism even
if the model operators are nonlinear. This extends the results of chapter 3. Besides, this is
another proof of the equivalence between 4D-Var and the Kalman filter in a linear context.
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4.5 Particle filters (Monte Carlo)

Can we actually conceive a numerical algorithm that converges to the solution of the
Bayesian filtering problem? Such numerical approach would likely belong to the Monte
Carlo methods. This means that a probability density function is represented by a dis-
crete sample of the targeted pdf. Rather than trying to compute the exact solution of
the Bayesian filtering equations, the transformations of such filtering (Bayes’ rule for the
analysis, model propagation for the forecast) are applied to the members of the sample.
The statistical properties of the sample, such as the moments, are meant to be those of the
targeted pdf. Of course this sampling strategy can only be exact in the asymptotic limit,
that is in the limit where number of members (or particles) is going to infinity.

The most popular and simple algorithm of Monte Carlo type that solves the Bayesian
filtering equations, is called the bootstrap particle filter (Gordon et al., 1993). Its
description follows.

Sampling Let us consider a sample of particles {x1,x2, . . . ,xM}. The related probability
density function at time tk is pk(x): pk(x) ≃

∑M
i=1w

k
i δ(x− xi

k), which is meant to be an
approximation of the exact density that the samples emulates. wi

k is a scalar number which
weights the importance of particle i within the ensemble. At this stage, we assume that
the weights wk

i are uniform wk
i = 1/M .

Forecast At the forecast step, the particles are propagated by the model without ap-
proximation, i.e. pk+1(x) ≃

∑M
i=1w

i
kδ(x− xi

k+1), with xi
k+1 = Mk+1(xk).

Analysis The analysis step of the particle filter is extremely simple and elegant. The
rigorous implementation of Bayes’ rule makes us attach to each particle a specific statistical
weight that corresponds to the likelihood of the particle with respect to the data. The
weight of each particle is changed according to

wi
k+1,+ ∝ wi

k+1,−p(yk+1|xi
k+1). (4.42)

Resampling Unfortunately, these statistical weights have a potentially large amplitude
of fluctuation. Worse, as sequential filtering goes on, one particle, i.e. one trajectory of
the model will stand out among the others. Its weight will largely dominate the others
(wi ≲ 1) while the other weights vanish. Then, the particle filter becomes very inefficient as
an estimating tool since it looses any variability. This phenomenon is called degeneracy of
the particle filter. An example of such degeneracy is given in Fig. 4.3, where the statistical
properties of the biggest weight is studied on a meteorological toy model of 40 and 80
variables. In a degenerate case, the maximum weight will often reach 1 or close to 1,
whereas in a balanced case, values very close to 1 will be less frequent.

One way to mitigate this impeding phenomenon is to resample the particles by redrawing
a sample with uniform weights from the degenerate distribution. After resampling, all
particles have the same weight, wi

k = 1/M .

The principle of the bootstrap particle filter is illustrated in Fig. 4.4.
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Figure 4.3: On the left: statistical distribution of the weights of the particle bootstrap
filter in a balanced case. The physical system is a Lorenz 1995 model with 40 variables
(Lorenz and Emanuel, 1998). On the right: the same particle filter is applied to a Lorenz
1995 low-order model, but with 80 variables. The weights clearly degenerate with a peak
close to 1.

The particle filter is very efficient on highly nonlinear system but of low dimension. Unfor-
tunately, it is not suited for high-dimensional systems, as soon as the dimension gets over,
say about 10. Avoiding degeneracy requires a great many particles. Roughly, this number
increases exponentially with the system state space dimension!

t t+2
p pp

t+1

observation

p
t+1
+−+ −

+

resampling

Figure 4.4: Scheme of the bootstrap particle filter.

For the forecast step, it is also crucial to introduce stochastic perturbations of the states.
Indeed the ensemble will impoverish with the many resampling to undergo. To enrich the
sample, it is necessary to stochastically perturb the states of the system.

Finally, even if it seems inefficient to apply such particle filters, tests have been successfully
run in oceanography (Van Leeuwen, 2003) that are promising in the long run.
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Chapter 5

The ensemble Kalman filter

In chapter 3, we found that the Kalman filter had two major drawbacks. Firstly, it is
numerically hardly affordable in high-dimensional systems. One has to manipulate the
error covariance matrix, which requires Nx(Nx + 1)/2 scalars to be stored. Clearly this
is impossible for high-dimensional systems for which the storage of a few state vectors is
already challenging. Moreover, during the forecast step from tk to tk+1, one has to compute
a forecast error covariance matrix of the form (see chapter 3)

Pf
k+1 = Mk+1P

a
kM

⊤
k+1 +Qk. (5.1)

Such computation would require to use the model 2Nx times (a left matrix multiplication
by Mk+1, followed by a right matrix multiplication by M⊤

k+1). For a high-dimension
system, this is likely to be much too costly, even if leveraging on parallel computing.

Another drawback of the Kalman filter is that its extension to nonlinear models, namely
the extended Kalman filter, is an approximation. It makes use of the tangent linear of the
model. When the tangent linear approximation is breached, for instance when the timestep
between two consecutive updates is long enough, the extended Kalman filter may yield a
too coarse approximation of the forecast error covariance matrix, which may induce the
divergence of the filter.

5.1 The reduced rank square root filter

The reduced rank square root filter, denoted RRSQRT, is a solution to the main problem of
the dimensionality. The issue of the computation and propagation of the error covariance
matrices is astutely circumvented. The error covariance matrices are represented by their
principal axes (those directions with the largest eigenvalues), that is to say by a limited
selection of modes. The update and the forecast step will therefore bear on a limited
number of modes, rather than on matrices (i.e. a collection of Nx modes for a state space
of dimension Nx).

The initial system state is xf
0, with an error covariance matrix Pf

0. We assume a decom-
position in terms of the principal modes, Pf

0 : Pf
0 ≃ Sf

0(S
f
0)

⊤, where Sf
0 is a matrix of size

Nx × Nm with Nm Nx-vector columns that coincide with the Nm first dominant modes
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of Pf
0. For instance, this could be obtained through the diagonalisation of the symmetric

semi-definite positive Pf
0:

Pf
0 =

Nx∑
n=1

σnsns
⊤
n ≈

Nm∑
i=1

σisis
⊤
i , (5.2)

where the eigenvalues are arranged by decreasing order σ1 ≥ σ2 ≥ . . . σNx ≥ 0. We could
choose Sf

0 =
[ √

σ1s1
√
σ2s2 · · · √

σNmsNm

]
so that indeed Pf

0 ≃ Sf
0(S

f
0)

⊤.

Next, we assume that such decomposition persists at later time: Pf
k ≃ Sf

k(S
f
k)

⊤, or getting
rid of the time index, Pf ≃ SfS

⊤
f . The background representation has been simplified.

Rather than thinking in terms of Pf , we think about its dominant modes Sf , as well as
the transformed matrix of size Ny ×Nm in observation space, Yf = HSf . H is either the
observation operator when it is linear, or its tangent linear. These matrices appear when
computing the Kalman gain in the analysis step,

K∗ = PfH⊤
(
HPfH⊤ +R

)−1

= SfS
⊤
f H

⊤
(
HSfS

⊤
f H

⊤ +R
)−1

= Sf (HSf)
⊤
(
(HSf) (HSf)

⊤ +R
)−1

. (5.3)

Hence, the Kalman gain, computed at the analysis step, is simply expressed with the help
of the Yf matrix:

K∗ = SfY
⊤
f

(
YfY

⊤
f +R

)−1
. (5.4)

The analysis estimate xa can be obtained from this gain and the standard update formula.

Then, what happens to the formula that gives the analysis error covariance matrix Pa?
We have

Pa = (Ix −K∗H)Pf

=

(
Ix − SfY

⊤
f

(
YfY

⊤
f +R

)−1
H

)
SfS

⊤
f

= Sf

(
Im −Y⊤

f

(
YfY

⊤
f +R

)−1
Yf

)
S⊤
f . (5.5)

We now look for a square root matrix Sa such that Sa (Sa)⊤ = Pa. One such matrix is

Sa = Sf
(
Im −Y⊤

f (YfY
⊤
f +R)−1Yf

)1/2
. (5.6)

Of size Nx × Nm, Sa represents a collection of m state vectors, that is to say a posterior
ensemble. This avoids a brutal calculation of the error covariance matrices. The computa-
tion of the square root matrix might look numerically costly. This is not the case though
since Yf is of reduced size and Im −Y⊤

f (YfY
⊤
f +R)−1Yf is of dimension Nm × Nm. In

addition, the conditioning of the square root matrix is better than that of the initial er-
ror covariance matrix (it is the square root of the original conditioning). This ensures an
improved numerical precision.
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After the analysis step, we seek to reduce the dimension of the system. We wish to shrink
the number of modes from Nm to Nm − Nq. We first diagonalise S⊤

a Sa = VΛV⊤. We
consider the first Nm − Nq eigenmodes with the largest eigenvalues. We keep the first
Nm−Nq eigenvectors, which correspond to the first Nm−Nq columns of V if the diagonal
entries of Λ are stored in decreasing order. These Nm − Nq vectors are stored in the
(Nm −Nq)×Nx matrix Ṽ. Then Sa is reduced to S̃a ≡ SaṼ.

At the forecast step, the analysis is forecasted through xf
k+1 = Mk+1(x

a
k). The square

root matrix Sa
k is propagated with the tangent model. Then, the matrix is enlarged by

adding Nq modes that are meant to introduce model error variability. The matrix of these
augmented modes is of the form

Sf
k+1 = [Mk+1S̃

a
k,Tk], (5.7)

where M is the tangent linear model of M. It has Nm modes, so that the assimilation
procedure can be cycled.

This type of filter has been put forward in air quality where the number of chemical species
considerably increases the state space dimension (Segers, 2002). A similar filter, known as
SEEK, has also been used in oceanography for the same reasons (Pham et al., 1998).

These filters clearly overcome the main drawback of the Kalman filter, assuming the dy-
namics of the system can indeed be represented with a limited Nm ≪ Nx number of modes.
However, by still making use of the tangent linear model, they only approximate the non-
linear propagation of uncertainty. Moreover, it requires to develop the tangent linear of
the model. In that respect, one can propose a better reduced Kalman filter, known as the
ensemble Kalman filter .

5.2 The stochastic ensemble Kalman filter

The ensemble Kalman filter was proposed by Geir Evensen in 1994, and later amended in
1998 (Evensen, 1994; Burgers et al., 1998; Houtekamer and Mitchell, 1998; Evensen, 2009).
Its semi-empirical justification could be disconcerting and not as obvious as that of the
RRSQRT. Nevertheless, the ensemble Kalman filter has proven very efficient on a large
number of academic and operational data assimilation problems.

The ensemble Kalman filter (EnKF in the following) is a reduced-order Kalman filter, just
like the RRSQRT filter. It only handles the error statistics up to second order. Therefore,
the EnKF is not a particle filter of the family that we discussed in chapter 4. It is a
Gaussian filter. It has been shown that in the limit of a large number of particles, the
EnKF does not solve the Bayesian filtering problem as exposed in chapter 4, as opposed to
the particle filter, except when the models are linear and when the initial error distribution
is Gaussian.

Yet, just as the particle filter and the RRSQRT filter, the EnKF is based on the concept
of particles, a collection of state vectors, the members of the ensemble. Rather than
propagating huge covariance matrices, the errors are emulated by scattered particles, a
collection of state vectors whose dispersion (variability) is meant to be representative of
the uncertainty of the system’s state. Just like the particle filter, but unlike the RRSQRT,
the members are to be propagated by the model without any linearisation.
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Reduced rank square root (RRSQRT) filter
1. Initialisation

• System state xf
0 and error covariance matrix Pf

0.
• Decomposition: Qk = TkT

⊤
k and Pf

0 = Sf
0S

f
0
⊤.

2. For tk = 1, 2, · · ·
(a) Analysis

• Gain computation:

Yk = HkS
f
k, K∗

k = Sf
kY

⊤
k

(
YkY

⊤
k +Rk

)−1

• Computation of the analysis

xa
k = xf

k +K∗
k

(
yk −Hk(x

f
k)
)

• Computing the (square root) matrix of the modes

Sa
k = Sf

k

(
Im −Y⊤

k (YkY
⊤
k +Rk)

−1Yk

)1/2
• Sa

k has m modes.
(b) Reduction

• Diagonalisation VΛV⊤ = Sa
k
⊤Sa

k

• Reduction of the ensemble S̃a
k = Sa

kṼ
• S̃a

k has m− q modes.
(c) Forecast

• Computation of the forecast estimate xf
k+1 = Mk+1(x

a
k)

• Computing the matrix of the modes

Sf
k+1 = [Mk+1S̃

a
k,Tk]

• Sf
k+1 has m modes.

5.2.1 The analysis step

The EnKF seeks to mimic the analysis step of the Kalman filter but with an ensemble of
limited size rather than with error covariance matrices. The goal is to perform for each
member of the ensemble an analysis of the form

xa
i = xf

i +K∗
(
yi −H(xf

i)
)
. (5.8)

where i = 1, . . . , Ne is the member index in the ensemble, xf
i is state vector i forecasted at

the analysis time. For the moment, we shall assume that yi ≜ y, the observation vector,
does not depend on i. K∗ should be the Kalman gain, that we would like to compute from
the ensemble statistics

K∗ = PfH⊤
(
HPfH⊤ +R

)−1
, (5.9)
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where R is the given observational error covariance matrix. The forecast error covariance
matrix is estimated from the ensemble

xf =
1

Ne

Ne∑
i=1

xf
i, Pf =

1

Ne − 1

Ne∑
i=1

(
xf
i − xf

)(
xf
i − xf

)⊤
. (5.10)

Thanks to Eq. (5.8), we obtain a posterior ensemble {xa
i }i=1,...,Ne

from which we can
compute the posterior statistics. Firstly, the analysis is computed as the mean of the
posterior ensemble

xa =
1

Ne

Ne∑
i=1

xa
i . (5.11)

Secondly, the analysis error covariance matrix is computed from the posterior ensemble

Pa =
1

Ne − 1

Ne∑
i=1

(xa
i − xa) (xa

i − xa)⊤ . (5.12)

Note, however, that the computation of Pa is optional since it is not required by the
sequential algorithm. If yi ≜ y, the ensemble anomalies, eai = xa

i − xa, i.e. the deviations
of the ensemble members from the mean are

eai = efi +K∗
(
0−Hefi

)
= (Ix −K∗H) efi, (5.13)

which yields

Pa =
1

Ne − 1

Ne∑
i=1

(xa
i − xa) (xa

i − xa)⊤ = (Ix −K∗H)Pf(Ix −K∗H)⊤. (5.14)

However, to mimic the BLUE analysis of the Kalman filter, we should have obtained
instead

Pa = (Ix −K∗H)Pf(Ix −K∗H)⊤ +K∗RK∗⊤. (5.15)

Therefore, the error is systematically underestimated since the second positive term is
ignored, which is likely to lead to the divergence of the EnKF.

A solution around this problem is to perturb the observation vector for each member,
yi = y+ ui, where ui is drawn from the Gaussian distribution ui ∼ N(0

¯
,R)1. Firstly, we

would like to ensure that
∑Ne

i=1 ui = 0
¯

to avoid biases. Besides, we define the empirical
error covariance matrix

Ru =
1

Ne − 1

Ne∑
i=1

uiu
⊤
i , (5.16)

which should coincide with R in the asymptotic limit Ne −→ ∞.

The anomalies are modified accordingly,

eai = efi +K∗
u

(
eoi −Hefi

)
, (5.17)

where the gain K∗
u is the same as the Kalman gain K∗ but with R replaced by the empirical

Ru. This error yields the correct analysis error covariance matrix:

Pa = (Ix −K∗
uH)Pf(Ix −K∗

uH)⊤ +K∗
uRK∗

u = (Ix −K∗
uH)Pf . (5.18)

1More to the point, it is H(xf
i) that needs to be perturbed rather than y. Since both are formally

equivalent, perturbing the observations is an expression that remains very common.
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5.2.2 The forecast step

In the forecast step, the updated ensemble obtained in the analysis is propagated by the
model to the next timestep,

for i = 1, . . . , Ne xf
i = M(xa

i ). (5.19)

The forecast estimate is the mean of the forecast ensemble, i.e.

xf =
1

Ne

Ne∑
i=1

xf
i, (5.20)

while the forecast error covariance matrix is estimated via

Pf =
1

Ne − 1

Ne∑
i=1

(
xf
i − xf

)(
xf
i − xf

)⊤
. (5.21)

It is important to observe that we have avoided the use of the tangent linear operator,
or of any linearisation. This makes a significant difference with the RRSQRT filter. This
difference should particularly matter in stronger nonlinear regimes.

5.2.3 Assets of the EnKF

Like the RRSQRT filter, the particle filter or the 3D-Var, the EnKF does not require the
adjoint model. More interestingly it can help avoid the computation of the adjoint of
the observation operator. Let us consider the formula of the Kalman gain Eq. (5.9) that
clearly makes use of the adjoint of the observation operator. Instead of computing the
matrix products PfH⊤ and HPfH⊤, we compute

yf =
1

Ne

Ne∑
i=1

H
(
xf
i

)
,

PfH⊤ =
1

Ne − 1

Ne∑
i=1

(
xf
i − xf

) [
H
(
xf
i − xf

)]⊤
≃ 1

Ne − 1

Ne∑
i=1

(
xf
i − xf

) [
H
(
xf
i

)
− yf

]⊤
,

HPfH⊤ =
1

Ne − 1

Ne∑
i=1

[
H
(
xf
i − xf

)] [
H
(
xf
i − xf

)]⊤
≃ 1

Ne − 1

Ne∑
i=1

[
H
(
xf
i

)
− yf

] [
H
(
xf
i

)
− yf

]⊤
. (5.22)

This avoids the use of not only the adjoint model, but also the tangent linear of the
observation operator.

Except with the computation of the Kalman gain, all the operations on the ensemble
members are independent. This implies that their parallelisation can be trivially carried
out. This is one of the main reasons for the success and popularity of the EnKF.

Note that there are other variants of the EnKF. The habit of the author of these notes is
to call this variant with perturbation of the observations the stochastic EnKF .
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The stochastic ensemble Kalman filter
1. Initialisation

• Initial system state xf
0 and initial error covariance matrix Pf

0.
2. For tk = 1, 2, · · ·

(a) Observation
• Draw a statistically consistent observation set: for i = 1, .., Ne :

yi = y + ui

Ne∑
i=1

ui = 0

• Compute the empirical error covariance matrix

Ru =
1

Ne − 1

Ne∑
i=1

uiu
⊤
i

(b) Analysis

• Compute the gain K∗
u = PfH⊤

(
HPfH⊤ +Ru

)−1

• Ensemble of analyses for i = 1, .., Ne

xa
i = xf

i +K∗
u

(
yi −H(xf

i)
)

and their mean

xa =
1

Ne

Ne∑
i=1

xa
i

• Compute the analysis error covariance matrix

Pa =
1

Ne − 1

Ne∑
i=1

(xa
i − xa) (xa

i − xa)⊤

(c) Forecast
• Compute the ensemble forecast for i = 1, .., Ne xf

i = M(xa
i )

and their mean

xf =
1

Ne

Ne∑
i=1

xf
i

• Compute the forecast error covariance matrix

Pf =
1

Ne − 1

Ne∑
i=1

(
xf
i − xf

)(
xf
i − xf

)⊤

5.2.4 Examples

Let us again consider the nonlinear oscillator of chapter 2. The performance of the stochas-
tic EnKF on this test case is shown in Fig. 5.1.
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Figure 5.1: A stochastic ensemble Kalman filter applied to the anharmonic oscillator with
one observations every 25 timesteps.

Let us now apply the stochastic EnKF on the somewhat more difficult perturbed anhar-
monic oscillator introduced in chapter 4. It shows the divergence of the extended Kalman
filter in the absence of frequent observations (less than one observation every 58 timesteps).
Under the same setting, we implement the EnKF with a frequency of observation of one
observation every 50 timesteps, then one observation every 100 timesteps. The results are
shown in Fig. 5.2 and Fig. 5.3 respectively. No divergence is observed.

Hence, the EnKF accommodates a lower observation frequency than the extended Kalman
filter.

5.3 The deterministic ensemble Kalman filter

The stochastic EnKF enables to individually track each member of the ensemble, with
the analysis step for them to interact. This nice property comes with a price: we need
to independently perturb the observation vector of each member. Although this seems
elegant, it also introduces numerical noise when drawing the perturbation ui. This can
affect the performance of the stochastic EnKF, especially when the number of observations
for a single analysis is limited.

An alternative idea to perform a statistically consistent EnKF analysis would be to fol-
low the square root approach of the RRSQRT filter. This yields the so-called ensemble
square root Kalman filter (EnSRF). Because with this scheme the observations are
not perturbed, it qualifies as a deterministic EnKF .

There are several variants of the EnSRF. Be aware that they are, to a large extent, the-
oretically equivalent. In this course, we shall focus on the so-called ensemble-transform
variant of the deterministic EnKF, usually abbreviated ETKF (Bishop et al., 2001; Hunt
et al., 2007). Rather than performing the linear algebra in state or observation space, the
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Figure 5.2: Implementation of the stochastic EnKF on the perturbed anharmonic oscil-
lator. The system is observed once every 50 integration timesteps. This graph can be
compared to that of Fig. 4.1.

algebra is mostly performed in the ensemble space .

5.3.1 Algebra in the ensemble space

Let us define this ensemble space. We can write the forecast error covariance matrix as

Pf =
1

Ne − 1

Ne∑
i=1

(
xf
i − xf

)(
xf
i − xf

)⊤
= XfX

⊤
f . (5.23)

where Xf is a Nx ×Nm matrix whose columns are the normalised anomalies

[Xf ]i =
xf
i − xf

√
Ne − 1

. (5.24)

The matrix of the anomalies, Xf , plays the role of the matrix of the reduced modes Sf of
the RRSQRT filter.

We shall assume that the analysis belongs to the affine space generated by

x = xf +Xfw (5.25)

where w is a vector of coefficients in the vector space RNe . We call it the ensemble space .
Note that the decomposition of x is not unique, because the vector of coefficients w + λ1
with 1 = (1, . . . , 1)⊤ ∈ RNe yields the same state vector x since Xf1 = 0

¯
.

Again we shall use the notation Yf to represent HXf if the observation operator is linear.
If it is nonlinear, we consider Yf to be the matrix of the observation anomalies

[Yf ]i =
H(xf

i)− yf

√
Ne − 1

with yf =
1

Ne

Ne∑
i=1

H(xf
i), (5.26)
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Figure 5.3: Implementation of the stochastic EnKF on the perturbed anharmonic oscil-
lator. The system is observed once every 100 integration timesteps. The filter remains
stable and manages to track the truth. This graph can be compared to that of Fig. 4.2.

which stands as a fine approximation following the ideas of section 5.2.3.

5.3.2 Analysis in ensemble space

As opposed to the stochastic EnKF, we wish to perform a single analysis rather than
performing an analysis for each member of the ensemble. For the analysis estimate, we
can adopt the mean analysis of the stochastic EnKF, i.e.

xa = xf +K∗
(
y −H(xf)

)
(5.27)

where we used K∗ = PfH⊤ (HPfH⊤ +R
)−1 rather than Ku, as defined by Eq. (5.17),

since the observations are not perturbed in a deterministic approach.

We shall reformulate this analysis but working in the ensemble space. We look for the
optimal coefficient vector wa that stands for xa ≡ xa defined above. To do so we write

xa = xf +Xfw
a. (5.28)

Inserting this decomposition into Eq. (5.27), and denoting δ = y −H(xf), we obtain

xf +Xfw
a = xf +XfX

⊤
f H

⊤
(
HXfX

⊤
f H

⊤ +R
)−1

δ, (5.29)

which suggests

wa = X⊤
f H

⊤
(
HXfX

⊤
f H

⊤ +R
)−1

δ

= Y⊤
f

(
YfY

⊤
f +R

)−1
δ. (5.30)
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The gain K∗ is computed in the observation space. Remember that using the Sherman-
Morrison-Woodbury lemma, it was possible to compute the gain in state space. We showed
in chapter 1 that PbH⊤ (HPbH⊤ +R

)−1
=
(
P−1

b +H⊤R−1H
)−1

H⊤R−1. Now, with
the identifications Pb = Ie and H = Yf , we obtain

wa =
(
Ie +Y⊤

f R
−1Yf

)−1
Y⊤

f R
−1δ. (5.31)

The gain matrix is now computed in the ensemble space rather than the observation space
or the state space! This makes a difference as far numerical complexity is concerned.

5.3.3 Generating the posterior ensemble

Writing the analysis in ensemble space is merely a reformulation of the stochastic EnKF,
hardly more. The genuine difference between the deterministic EnKF and the stochastic
EnKF comes in the generation of the posterior ensemble.

To generate a posterior ensemble that would be representative of the posterior uncertainty,
we would like to factorise Pa = XaX

⊤
a . We can repeat the derivation of the RRSQRT

filter, Eq. (5.6),

Pa = (Ix −K∗
kH)Pf

≃
(
Ix −XfY

⊤
f

(
YfY

⊤
f +R

)−1
H

)
XfX

⊤
f

≃ Xf

(
Ie −Y⊤

f

(
YfY

⊤
f +R

)−1
Yf

)
X⊤

f . (5.32)

That is why we choose

Xa = Xf

(
Ie −Y⊤

f (YfY
⊤
f +R)−1Yf

)1/2
. (5.33)

Remarquably, this expression can be simplified into

Xa = Xf

(
Ie −Y⊤

f (YfY
⊤
f +R)−1Yf

)1/2
= Xf

(
Ie −

(
Ie +Y⊤

f R
−1Yf

)−1
Y⊤

f R
−1Yf

)1/2

= Xf

[(
Ie +Y⊤

f R
−1Yf

)−1 (
Ie +Y⊤

f R
−1Yf −Y⊤

f R
−1Yf

)]1/2
= Xf

(
Ie +Y⊤

f R
−1Yf

)−1/2
, (5.34)

where we have used the Sherman-Morrison-Woodbury lemma again between the first line
and the second line.

This posterior ensemble of anomalies is all that we need to cycle the deterministic EnKF.
Defining T =

(
Ie +Y⊤

f R
−1Yf

)−1/2, we can build the posterior ensemble as

for i = 1, . . . , Ne xa
i = xa +

√
Ne − 1Xf [T]i = xf +Xf

(
wa +

√
Ne − 1 [T]i

)
. (5.35)
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The deterministic ensemble Kalman filter
(Ensemble transform Kalman variant)

1. Initialisation
• Ensemble of state vectors Ef

0 = {x0, . . . ,xNe}.
2. For tk = 1, 2, · · ·

(a) Analysis
• Compute forecast mean, the ensemble anomalies and the

observation anomalies:

xf
k = Ef

k1/Ne

Xf
k =

(
Ef

k − xf
k1

⊤
)
/
√
Ne − 1

Yf
k =

(
Hk(E

f
k)−Hk(x

f
k)1

⊤
)
/
√
Ne − 1

• Computation of ensemble transform matrix

Ω =
(
Ie +Y⊤

k R
−1
k Yk

)−1

• Analysis estimate in ensemble space

wa
k = Ω

(
Yf

k

)⊤
R−1

k

(
yk −Hk(x

f
k)
)

• Generating the posterior ensemble

Ea
k = xf

k1
⊤ +Xf

k

(
wa

k1
⊤ +

√
Ne − 1Ω1/2

)
(b) Forecast

• Forecast ensemble

Ef
k+1 = Mk+1 (E

a
k)

Note that the updated ensemble is centred on xa, since

1

Ne

Ne∑
i=1

xa
i = xa +

√
Ne − 1

Ne
XfT1 = xa +

√
Ne − 1

Ne
Xf1 = xa, (5.36)

where 1 = [1, . . . , 1]⊤. Not all EnSRF have a centred ensemble. It has been shown that a
centred posterior ensemble often (if not always) yields better performance.

5.4 Localisation and inflation

The EnKF approach seems magical. We traded the extended Kalman filter for a consid-
erably computationally cheaper filter meant to achieve similar performances if not better.
But there is no free lunch and this comes with significant drawbacks to cope with. Fun-
damentally, one cannot hope to represent the full error covariance matrix of a complex
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high-dimensional system with a few modes Ne ≪ Nx, usually from a few dozen to a few
hundred. This implies large sampling errors, meaning that the error covariance ma-
trix is only sampled by a limited number of modes. Even though the unstable degrees of
freedom of dynamical systems that we wish to control with a filter are usually far fewer
than the dimension of the system, they often still represent thousands, possibly millions
of independent degrees of freedom. Nonetheless, forecasting an ensemble of such size is
usually not affordable.

The consequence of this issue always is the divergence of the filter which often makes the
EnKF a useless tool without the implementation of efficient fixes. In other words, in order
to make the EnKF a viable algorithm, one needs to cope with the sampling errors.

Fortunately, there are clever tricks to overcome this major issue. They arte known as the
localisation and the inflation .

5.4.1 Localisation

For most geophysical systems distant observables are barely correlated. In other words,
two distant parts of the system are almost independent at least for short time scales. We
could exploit this and spatially localise the analysis, i.e. restrict its spatial scope. There
are two main ways to achieve this goal.

The first one is called domain localisation , or local analysis. Instead of performing a
global analysis valid at any location in the domain, we perform a local analysis to update the
local state variables using local observations. Typically one would update a state variable
at a location M by assimilating only the observations within a fixed range of M . If this
range, known as the localisation length , is too long, then the analysis becomes global as
before, and may fail. On the other hand, if the localisation length is too small, some short
to medium-range correlation might be neglected resulting in a possibly viable but a poor
data assimilation system. One would then update all the state variables performing those
local analyses. That may seem a formidable computational task but all these analyses can
be carried out in parallel. Besides, since the number of local observations is a fraction of
the total, the computation of the local gain is much faster than that of the global gain.
All in all, such an approach is viable even on very large systems. Figure 5.4 is a schematic
representation of a local update around M in the domain localisation approach where
only the surrounding observations of a grid-cell to update are assimilated. One significant
drawback of domain localisation is its inability to process non-local observations such as
space-borne radiance measurements, since they involve state vector components across
several local domains. On has to resort to drastic approximation to assimilate them.

The second approach called covariance localisation focuses on the forecast error covari-
ance matrix. It is based on the remark that the forecast error covariance matrix Pf is of
low rank, at most Ne − 1. If the empirical Pf is probably a good approximation of the
true error covariance matrix at short distances, the insufficient rank will induce long-range
correlations. These correlations are spurious: they are likely to be unphysical and are
not present in the true forecast error covariance matrix. A brilliant idea is to regularise
Pf by smoothing out these long-range spurious correlations and increasing the rank of Pf .
To do so, one can regularise Pf by multiplying it point-wise with a short-range predefined
correlation matrix ρ ∈ RNx . The point-wise multiplication is called a Schur product and
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Figure 5.4: Schematic representation of the local update of the variable defined over the
red grid-cell with 3 surrounding observations (marked by blue dots).

denoted with a ◦. It is defined by[
Pf ◦ ρ

]
ij
=
[
Pf
]
ij
[ρ]ij . (5.37)

With reasonable conditions on ρ, one can mathematically ensure that Pf ◦ ρ is full-rank
definite-positive. As can be read from Eq. (5.37), the spurious correlations have been
levelled off by ρ, if ρ is short-ranged. This regularised Pf ◦ ρ will be used in the EnKF
analysis as well as in the generation of the posterior ensemble.

Of course, as a side-effect, it might also remove some physical and true long-distance
correlations, thus inducing some physical imbalance in the analysis.

Covariance localisation and domain localisation seem quite different. Indeed they are
mathematically distinct, though they are both based on two sides of the same paradigm.
However, it can be shown that they should yield very similar results if the innovation at
each time step is not too strong (Sakov and Bertino, 2011).

Figure 5.5 illustrates covariance localisation. We consider a one-dimensional state space of
Nx = 200 variables, and an error covariance matrix defined by

[P]n,m = e−
|n−m|

L , (5.38)

where n,m = 1, . . . , Nx and L = 10. An ensemble of Ne = 20 members is generated
from the exact Gaussian distribution of error covariance matrix P. The empirical error
covariance matrix is computed from this ensemble, and a Schur localisation is applied to
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the empirical covariance matrix to form a regularised covariance matrix. For the sake of
the demonstration, we take the localisation matrix to be the correlation matrix of the true
covariance matrix.
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Figure 5.5: Covariance localisation. Left: the true covariance matrix. Middle: the
empirical covariance matrix. Right: the regularised empirical covariance matrix using
Schur localisation.

5.4.2 Inflation

Even when the analysis is made local, the error covariance matrices are still evaluated with
a finite-size ensemble. This often leads to sampling errors. With a proper localisation
scheme, they might be small. However small they may be, they will accumulate and they
will carry over to the next cycles of the sequential EnKF scheme. As a consequence, there
is always a risk that the filter may ultimately diverge. One way around is to inflate the
error covariance matrix by an empirical factor λ2 slightly greater than one. It can be
applied before or after the analysis. For instance, after the analysis, inflating means

Pa −→ λ2Pa. (5.39)

Another way to achieve this is to inflate the ensemble

xa
i −→ xa + λ (xa

i − xa) . (5.40)

This type of inflation is called multiplicative inflation .

In a perfect model context, the multiplicative inflation is meant to compensate for sampling
errors and the approximate assumption of Gaussianity (Bocquet, 2011). In that case, it
helps cure an intrinsic source of error of the EnKF scheme.

Yet, inflation can also compensate for the underestimation of the errors due to the presence
of model error, a source of error external to the EnKF scheme. In this context, additive
type of inflation can also be used, either by

Pf −→ Pf +Q, (5.41)

of by adding noise to the ensemble members

xf
i −→ xf

i + ϵi with E
[
ϵiϵ

⊤
i

]
= Q. (5.42)
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5.5 Numerical tests on the Lorenz-96 model

The Lorenz-96 low-order model is a one-dimensional toy-model introduced by the famous
meteorologist Edward Lorenz in 1996 (Lorenz and Emanuel, 1998). It represents a mid-
latitude zonal circle of the global atmosphere. It has Nx = 40 variables {xn}n=1,...,Nx

. Its
dynamics are given by the following set of ordinary differential equations,

dxn
dt

= (xn+1 − xn−2)xn−1 − xn + F, (5.43)

for n = 1, . . . , Nx. The domain on which is defined the 40 variables is circle-like, so that
x−1 ≡ x39, x0 ≡ x40, and x41 ≡ x1. Hence it is assumed periodic. F is chosen to be 8. The
term (xn+1 − xn−2)xn−1 is a nonlinear convective term. It preserves the energy

∑Nx
n=1 x

2
n.

−xn is a dampening term while F is an energy injection/extraction term (depending on
the sign of the variables). This makes the dynamics of this model chaotic. The model has
13 positive Lyapunov exponents and one is equal to zero. This implies that, out of the
40 degrees of freedom of this model, 14 (asymptotic) directions correspond to growing or
neutral modes. In practice and for short-term forecast, around 13 directions (that change
with time) in the 40 model state space make a small perturbation grows under the action
of the model. The model is usually integrated using the 4th-order Runge-Kutta scheme
using an integration time-step of δt = 0.05.

We shall apply the deterministic EnKF to this model. The time interval between observa-
tional update will be ∆t = 0.05, meant to be representative of a data assimilation cycle of
global meteorological models (about 6 hours). With such value for ∆t, the data assimila-
tion system is considered to be weakly nonlinear, leading to statistics of the errors weakly
diverging from Gaussianity.

Figure 5.6 displays a trajectory of the model state. The model is characterised by about
eight nonlinear waves that interact. As can be seen, it seems difficult to predict the
behaviour of these waves except that they have the tendency to drift westward. These
waves are meant to represent large-scale Rossby waves.
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Figure 5.6: Trajectory of a state of the Lorenz-96 model. The Ox coordinate represents
time in units of ∆t = 0.05. The Oy coordinate represents the 40 state variables.

A twin experiment is conducted. The truth is represented by a free model run, meant
to be tracked by the data assimilation system. The system is assumed to be fully observed
(Ny = 40) every ∆t, so that Hk = I40, with the observation error covariance matrix
Rk = I40. The related synthetic observations are generated from the truth, and perturbed
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according to the same observation error prior. The performance of a scheme is measured
by the temporal mean of a root mean square difference between a state estimate (xa) and
the truth (xt). Typically, one averages over time the analysis root mean square error√√√√ 1

Nx

Ne∑
n=1

(xan − xtn)
2. (5.44)

All data assimilation runs will extend over 105 cycles, after a burn-in period of 5 × 103

cycles, which guarantees satisfying convergence of the error statistics (due to ergodicity of
the dynamics).

We vary the ensemble size from Ne = 5 to Ne = 50 and compare the performance in terms
of the root mean square error of

• the deterministic EnKF without inflation and without localisation,

• the deterministic EnKF with optimally-tuned inflation and without localisation,

• the deterministic EnKF without inflation and with optimally-tuned localisation,

• and the deterministic EnKF with optimally-tuned inflation and with optimally-tuned
localisation.

The average root mean square errors of the analyses over the long run are displayed in
Fig. 5.7.

By optimally-tuned, it is meant that the parameters in the localisation and inflation are
chosen in order to minimise the root mean square error. If one agrees that the application
of the EnKF to this low-order model captures several of the difficulties of realistic data
assimilation, it becomes clear from these numerical results that localisation and inflation
are indeed mandatory ingredients of a satisfying implementation of the EnKF.
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Figure 5.7: Average analysis root mean square error for a deterministic EnKF (ETKF)
without localisation and without inflation (□); without localisation and with optimally-
tuned inflation (⃝); with optimally-tuned localisation and no inflation (♢); with optimally-
tuned localisation and with optimally-tuned inflation (△).
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Part III

Data assimilation, machine learning
and dynamical systems
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Preambule: Data assimilation, machine learning and dynami-
cal systems

The goal of this chapter is to give a brief and very limited introduction to the realm of
machine and deep leaning. This introduction, however, remains within the scope of
recent developments of data assimilation techiques. Machine learning has found many
new convincing applications over the past recent years, besides vision or natural language.
The geosciences are among them. Even within the geosciences, there is a considerable
range of potential applications of machine learning and deep learning; some of them have
been evidenced recently (Reichstein et al., 2019). Here we will only learn some of the key
ideas when using artificial neural networks (NNs) to extend the playground of data
assimilation techniques.
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Chapter 6

Links between data assimilation and
deep learning

In this chapter, we will discover some connections between data assimilation and deep
learning when applied to dynamical systems.

Our specific goal will be to not only learn the state of a physical system through its
observation and a prior of this state but also its dynamics. This contrasts with traditional
data assimilation where the model is usually assumed to be known. Hence, the method
is qualifed as data-driven since both the state and the model, are meant to be discovered
through the observations only.

Note that machine learning usually seeks to find a good statistical model to explain a set
of data and potentially extrapolate to new data. This goal is very close to that of data
assimilation. However, data assimilation, at least in the geosciences, exploits large and
computationally challenging though known models. On the contrary, machine learning
aims at building fast models. Note that both disciplines make use of a large amount of
data.

6.1 Links between data assimilation and machine learning

6.1.1 The Bayesian approach to data assimilation (reminder)

Recall that the analysis performed in data assimilation can most of the time be seen as an
inference using an approximation of Bayes’ rule which has been discussed in Chapter 4 of
the lecture notes of this course. Bayes’ rule reads

pX|Y (x|y) = pY |X(y|x)pX(x)

pY (y)
, (6.1)

where pX|Y is the conditional probability density function (pdf), i.e. the ultimate pdf in
data assimilation and more generally inference; pY |X is the likelihood, pX is the prior
and pY is the evidence, a constant as far as X is concerned.
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This is a remarkably elegant and powerful formula. However, since it is also too general,
it is often very difficult to implement and almost systematically calls for approximations.

In Chapter 4 of these lecture notes, we assumed Gaussian statistics for the observation
likelihood

pY |X(y|x) = 1

(2π)Ny/2|R|1/2 exp
(
−1

2
∥y −H(x)∥2R−1

)
, (6.2)

where the Mahalanobis norm notation was used:

∥x∥2A = x⊤Ax. (6.3)

We also assumed Gaussian statistics for the prior

pX(x) =
1

(2π)Nx/2|B|1/2 exp
(
−1

2
∥x− xb∥2B−1

)
. (6.4)

Remarkably, as shown in Chapter 4, the conditional pdf can then be computed using Bayes’
rule, which rigorously yields a Gaussian pdf. The mean and maximum of this pdf (called
the maximum a posteriori) is the BLUE solution (see Chapter 1), and its associated error
covariance matrix is that of BLUE. This result is actually obvious if one focuses on the
state vector x in Bayes’ equation, and substitutes the lilelihood and state prior with their
Gaussian conterparts. The associated cost function is obtained as

J(x) = − ln
(
pX|Y (x|y)

)
=

1

2
∥y −H(x)∥2R−1 +

1

2
∥x− xb∥2B−1 + constants. (6.5)

This is none other than the 3D-Var cost function studied in Chapter 1, which is another
route to BLUE.

6.1.2 Bayesian justification of the weak-constraint 4D-Var

Let us consider a data assimilation problem with time. We wish to apply Bayes’ rule over
a time window [t0, tK ], with batches of observations yk at each time step tk. Let us denote
x0:K the collection of all vector states x0, . . . ,xK within this time window. Similarly
y0:K = y0, . . . ,yK for the collection of all observation vectors. Then the most general
conditional pdf of interest if p(x0:K |y0:K), where we omitted the subscript of the pdf as it
is unambiguous from the pdf argument. Applying Bayes’ rule, we obtain:

p(x0:K |y0:K) ∝ p(y0:K |x0:K)p(x0:K), (6.6)

where the evidence p(y0:K) can be (and has been) omitted since it does not depend on
x0:K .

Now, we assume that the observation errors are Gaussian and uncorrelated in time, with
error covariance matrices R0, . . . ,RK , so that:

p(y0:K |x0:K) =
K∏
k=0

p(yk|xk) ∝ exp

(
−1

2

K∑
k=0

∥yk −Hk(xk)∥2R−1
k

)
. (6.7)
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Next, we assume that the prior pdf p(x0:K) is Markovian, i.e. the state xk conditional on
the previous state xk−1 does not depend on all other previous past states. This yields:

p(x0:K) = p(x0)
K∏
k=1

p(xk|x0:k−1) = p(x0)
K∏
k=1

p(xk|xk−1). (6.8)

Furthermore, we assume Gaussian statistics for the model error which are uncorrelated in
time, with zero bias and error covariance matrices Q1, . . . ,QK so that:

p(x0:K) ∝ p(x0) exp

(
−1

2

K∑
k=1

∥xk −Mk (xk−1) ∥2Q−1
k

)
. (6.9)

Like in the static case, we can assemble the likelihood and prior pieces to obtain the cost
function associated to to the conditional pdf p(x0:K |y0:K):

J(x0:K) =− ln p(x0:K |y0:K) (6.10)

=− ln p(x0) +
1

2

K∑
k=0

∥yk −Hk(xk)∥2R−1
k

(6.11)

+
1

2

K∑
k=1

∥xk −Mk (xk−1) ∥2Q−1
k

+ constants. (6.12)

Unsurprisingly, this is the cost function of weak-constraint 4D-Var (see Chapter 4). Indeed,
the associated statistical assumptions explicitly assume that the model could be flawed.

With this type of weak-constraint 4D, one believes that the model can be corrected with
some stochastic noise to be added to the state vector. Instead of considering a known
model xk = Mk(xk−1), one could alternatively assume a parametric form of the model

xk = Mk(ω,xk−1), (6.13)

that depends on unknow time-independent parameters ω ∈ RNp . This implies that the
model dynamics is autonomous, i.e. it does not depend on time.

Many choices can be contemplated for ω. They can be a few important physical param-
eters of a well understood geophysical model. But, ω could also stand for a large set of
parameters that has a deep structural impact on Mk(ω,xk−1). For instance, Mk could
be a linear combination of a set of various functions, with ω the coefficients attached to
each function of the basis. This latter option is in the spirit of machine learning. This
correspondance between data assimilation and machine learning has been put forward in
e.g., Hsieh and Tang (1998); Abarbanel et al. (2018); Bocquet et al. (2019).

6.1.3 Bayesian analysis with model parameters

We can piggyback on the previous Bayesian analysis, but now adding the model parameter
vector ω to the Bayesian analysis:

p(x0:K ,ω|y0:K) ∝ p(y0:K |x0:K ,ω)p(x0:K ,ω) ∝ p(y0:K |x0:K ,ω)p(x0:K |ω)p(ω), (6.14)
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which requires to introduce a prior pdf p(ω) on the parameters. In the language of Bayesian
statistics, this is called a hierarchical decomposition of the conditional pdf.

As a consequence, the cost function for the state and model parameters problem is

J(x0:K ,ω) =− ln p(x0:K ,ω|y0:K) (6.15)

=+
1

2

K∑
k=0

∥yk −Hkxk∥2R−1
k

+
1

2

K∑
k=1

∥xk −Mk (ω,xk−1) ∥2Q−1
k

(6.16)

− ln p(x0)− ln p(ω) + constants. (6.17)

This cost function is again similar to the weak-constraint 4D-var, but (i) ω is now part of
the control variables, and (ii) there is a prior/background term on ω that may or may not
play a role depending on the relative importance of the dataset.

We note that, to be effective, a data assimialtion analysis based on this cost function
would require not only the gradient of the cost function with respect to the whole state
trajectory, i.e. ∇x0:KJ , but also the gradient of the cost function with respect to the model
parameters, i.e. ∇ωJ . This entails the construction of a tangent linear and adjoint of the
model with respect to the model parameters, which could represent a significant hardship
and will be discussed later on.

6.1.4 Machine learning limit

This (Bayesian) data assimilation standpoint on the problem of estimating the model (to-
gether with the state trajectory) is remarkable as it allows for noisy and partial observations
of the physical system, as in traditional data assimilation. Classical and simple machine
learning approaches of the problem would rather use a dataset which relies on a complete
observation of the physical system with minimal noise, using a simple least-square loss
function.

It turns out that this can be seen as a limiting case of the data assimilation problem
previously discussed. Let us again consider the cost function J(x0:K ,ω). Let us assume
that the physical system is fully and directly observed, i.e. Hk ≡ I, and that the observation
errors tend to zero, i.e. Rk → 0. Then the observation term in the cost function is
completely frozen and imposes that xk ≃ yk, so that, in this limit, the cost function
becomes

J(ω) =
1

2

K∑
k=0

∥yk −Mk(ω,yk−1)∥2Q−1
k

− ln p(ω) + constants. (6.18)

This coincides with the tyical machine learning loss function, where we would try to
fit the best model parametrised by ω to the observation sequence over the time window.
Again, solving the numerical problem would require the gradient of this loss function with
respect to the parameters, i.e. ∇ωJ , which is certainly computationally challenging with
complex parametrised models, as developed for the goesiences.

6.2 Neural network surrogate model

Hence, we would like to build a representation of a parametrised model which would be:
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• complex enough so that it can represent various (nonlinear) behaviours depending
on the choice of the parameters (which could be plenty),

• simple enough so that computing the exact tangent linear and adjoint can be enforced
in an efficient and automatic manner.

Artifical neural networks are the ideal mathematical tools that satisfy both properties.

6.2.1 What is a neural network?

An artificial neural netwrok (NN) is a function from a Cartesian space to another. Hence
there is an input and an output space. A simple (feed-forward or sequential) NN is built as
a succession of layers of neurons. Each layer is a stack of neurons. Each neuron in a layer
holds a scalar value, and has connections to both the neurons of the previous layer and
the neurons of the subsequent layer, which shows dependence between the neuron values.
The value in a neuron is determined from the values of the neurons in the previous layer
following the typical formula:

xk,i = σ

 N∑
j=1

wi,jxk−1,j + bi

 , (6.19)

where: 1. wi,j is the scalar that weights the input of neuron j of the previous layer to
neuron i of the current layer, 2. xk,i is the value hold by neuron i in the k-th layer, 3. bi
is a bias attached to this neuron, i.e. just a scalar, so that the transformation within the
argument of σ is affine, 4. and, finally, σ is the activation function, usually the identity
or a nonlinear function (sigmoid, tanh, a rectifier such as relu, etc.)

Figure 6.1: schematic of neuron and its computation.

Figure 6.1 shows a schematic of the operation of such neuron. Note that if σ is the identity,
the layer acts on the values of the neurons as a linear operator. Hence the nonlinearity
is essentially encoded in the activitation function, and its successive applications, layer
after layer. Relying on a linear neural network is tantamount to linear regression, i.e. the
estimation technique BLUE is based on.
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A key strength of NNs lies in these activation functions that make NNs excellent tools for
nonlinear regression. It was found very early that essential properties of the NNs do not
depend on the specification of the activation function as long as they are not polynomial.
However, quantitative results obviously depend on their choices.

Figure 6.2: Classical activation functions.

Figure 6.2 shows examples of classical activation functions. The neurons are stacked into
layers and the layers are ordered sequentially. The arrangment of the layers is the archi-
tectrure of the neural network.

6.2.2 Universal approximation theorems

From a mathematical standpoint, there is a fundamental reason why NNs are valuable
approximation tools. Indeed it can be shown that any sufficently regular function y = F(x)
can be approximated (to arbitrary precision) by a neural network with sufficiently large
hidden layers. This is called the universality approximation theorem (Cybenko, 1989;
Hornik et al., 1989; Barron, 1993), i.e. the NNs constitute a general enough set of functions
in between two Cartesian spaces. Yet, the number of required neurons is exponential with
the complexity of the function to be approximated. However, this can be significantly
mitigated by increasing the number of layers, rather than the number of neurons per layer.
This helps breaking the curse of dimensionality of the functional representation. This led
to the so-called deep learning, i.e. using NN architectures with many layers. This type
of results does not however tells us how, and how efficienlty the set of weights of such NN
can be learned.

6.2.3 Dense neural networks

For instance, a NN could be of the basic form shown in Fig. 6.3
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Figure 6.3: A typical dense neural network.

A layer with neurons connected to all neurons of the previous and subsequent layer are
called dense layers. When the NN is composed of dense layers, it is unsurprisingly called
a dense NN.

Obviously an architecture built with many dense layers may be numerically very demanding
as a single pass through the network would require a lot of matrix-vector computations
and would introduce a great number of weights.

6.2.4 Convolutional neural networks

For input and output spaces of high dimension, the systematic use of dense layers becomes
prohibitive. One can exploit the fact that similar local patterns in the input space would
produce similar outputs. For instance, an concrete object, say a hammer, in a picture
should yield the “hammer” tag, irrespective of its position in the picture.

A convolutional layer exploits this invariance idea. It sweeps the input space and applies
a fixed number of filters specified by weights whose span is a local patch of variables in the
input space. This has the potential to represent coherent and regular structures defined in
the input space.

Figures 6.4 and 6.5 show a schematic of the computation of two different neuron values in
the output of the same convolutional layer with one filter. Mathematically speaking, these
operations are called convolutions.

M. Bocquet and A. Farchi



86 Links between data assimilation and deep learning

Figure 6.4: Convolution operating on a tensor.

Figure 6.5: Convolution operating on a tensor.

Then one introduces as many kernels as desired features, where a ferature is a trait,
or property, that one wants to extract from the input. This leads to NNs of the form
explamplified by Fig. 6.6:

Figure 6.6: A typical deep convolutional neural network, or convnet.

Such NNs are called convolutional neural networks, or CNNs.

Introduction to data assimilation



6.2 Neural network surrogate model 87

6.2.5 Loss function, training and backpropagation

Imagine that there is a relationship between states from the input space (RNx) to the
output space (RNy), for instance y = F(x), but where F is not known to us. However,
we can sample this relationship through observations and obtain many couples of the form
(xi,yi), say Ns samples. Our objective is to learn this relationship using a neural network
that would approximate F .

Assuming F is a linear function, i.e. a matrix from the input space to the output space,
then the solution is known if there are enough independent sample points: one would use
the least square technique and minimise the quadratic cost function

L(F) =
Ns∑
i=1

∥yi − Fxi∥2. (6.20)

Then the solution (linear regression estimator) is

F⋆ =

(
Ns∑
i=1

yix
⊤
i

)(
Ns∑
i=1

xix
⊤
i

)−1

, (6.21)

where the matrix inverse should be replaced by the Moore–Penrose pseudo-inverse if the
matrix is not invertible (e.g., because the number of samples Ns is insufficient).

The generalisation to much more complex, nonlinear approximations, consists in looking
for a neural network x 7→ N (x) which minimises

L(N ) =

Ns∑
i=1

∥yi −N (xi) ∥2. (6.22)

This is the loss function of machine learning, which is the counterpart to the cost function
of data assimilation. Learning N this way is called supervised learning because samples
with both inputs and outputs are provided. Also note that minimising the loss function has
been called training in machine learning (analysis in data assimilation) since one wishes
to train the NN, i.e. learn its weights and biases.

However, as we learned on several occasions in this introduction to data assimilation, the
only efficient way to minimise this loss function is through numerical nonlinear optimisa-
tion, using an iterative solver that efficiently makes use of the gradient of L with respect
to N , specifically the weights and biases of the NN. We also learned that this entails to
compute the tangent linear and its adjoint of the operator N . Making use of the adjoint
of the tangent linear to compute the gradient with respect to the weights and biases has
been called backpropagation in machine learning, a renaming of adjoint modelling.

This is where a hidden technical revolution took place. Building on the efficacy and force
of Google, FaceBook, Apache, etc., tools were developed by these companies to efficiently
compute the tangent linear and adjoint of NNs, such as TensorFlow, PyTorch, Jax or the
Julia language. Moreover these tools were developed to efficiently leverage GPUs, TPUs
and parallel computing, while the user would still use Python commands. These tools
make automatic differentiation for deep learning problems accessible to the many.
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6.2.6 Regularisation and validation

With deep learning, NNs may have millions of weigths and biases. This may require a huge
dataset, and still may not guarantee the absence of over-fitting to the data. Hence, as we
learned in this course, a regularisation is needed, typically in the form of a background on
the weights and biases. This is actually one of the technique used in deep learning (simple
Tikhonov regularisation). Another, which is equivalent to cross validation, consists in
sparing a fraction of the dataset for, at each iteration of the descent, checking the progess on
independent data. This is the validation dataset. When the validation score (computed
on the validation dataset) saturates or rebounces, and even though the training score
continues to decrease, it is worthy to stop the iterative minimisation in order to avoid
overfitting. This will be discussed a bit later one, and much more in part 2 of this lecture.
Dataset splitting is illustrated in Fig. 6.7:

Figure 6.7: Dataset splitting.

Figure 6.7 gives an example of a dataset splitting into a training, validation and testing
sub-datasets. Practitionners usually incude most of the data in the training subset, but
the ratio 75%/15%/10% is not a golden rule.

6.3 Coding a neural network and its training with Tensor-
Flow

In the following we give a minimal example on how to create and use a simple NN using
the google suite TensorFlow 2.x with the Python API. We also rely on Keras, which is
now part of TensorFlow, and considerably facilitates the creation and use of NNs (Chollet,
2021).

There are three ways to code a NN model in TensorFlow 2.x, the sequential model,
the functional model, and the subclassing model. Here, we focus on the sequential
approach which is the simplest one and is designed for simple architectures with plain
staked layers.

In the following, we closely follow the TensorFlow documentation https://www.
tensorflow.org/guide/keras/sequential_model.
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6.3.1 Importing all modules

[3]: import numpy as np
import tensorflow as tf
from tqdm.auto import tqdm

import utils

utils.set_style()
seeds = [3, 31,
314, 3141, 31415]

6.3.2 Defining the neural network model

Let us define a sequential model with 3 layers. This NN is defined incrementally using
the add() method, layer by layer. The four (Keras) layers are chained down, in sequential
order. Layer1 is the first layer, layer2 and layer3 are the hidden layers and layer4 is the
ouput layer. Keep in mind that, as we explained earlier, this NN model is nothing more
than a function from the input space to the output space. One needs to specify the size of
the input vector and the size of the rest follows.

[4]: Nx = Ny = 3
initialiser = tf.keras.initializers.GlorotNormal(seed=seeds.pop(0))
model = tf.keras.Sequential()
model.add(tf.keras.layers.InputLayer(input_shape=(Nx,)))
model.add(tf.keras.layers.Dense(5, activation='relu',␣
↪→kernel_initializer=initialiser, name='layer1'))

model.add(tf.keras.layers.Dense(10, activation='relu',␣
↪→kernel_initializer=initialiser, name='layer2'))

model.add(tf.keras.layers.Dense(5, activation='relu',␣
↪→kernel_initializer=initialiser, name='layer3'))

model.add(tf.keras.layers.Dense(Ny, kernel_initializer=initialiser,␣
↪→name='layer4'))

We can have access to a summary of the model, i.e. a brief look at its architecture:

[5]: model.summary()

Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #

=================================================================
layer1 (Dense) (None, 5) 20

layer2 (Dense) (None, 10) 60

layer3 (Dense) (None, 5) 55
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layer4 (Dense) (None, 3) 18

=================================================================
Total params: 153
Trainable params: 153
Non-trainable params: 0
_________________________________________________________________

which tells us about the layers, their format, and the number of weights and biases in the
full network. We can have access to the internal parameters of the NN. For instance, let
us display the weights of the second layer:

[6]: print('weights of hidden layer', model.layers[1].weights)

weights of hidden layer [<tf.Variable 'layer2/kernel:0' shape=(5, 10)
dtype=float32, numpy=
array([[-0.27878687, 0.6957586 , -0.39197323, 0.25236636, -0.1739648 ,

-0.20580482, 0.17030655, 0.26538625, -0.02842008, -0.01333474],
[-0.47075042, -0.01118908, -0.64544606, -0.22949693, 0.2183459 ,

0.14189577, 0.039797 , -0.09955318, 0.05919757, -0.53678584],
[ 0.00384476, -0.5295028 , -0.57023287, 0.49235034, 0.5225375 ,

0.01377615, 0.75166893, 0.54394966, -0.01680202, 0.3406608 ],
[ 0.39751792, 0.2899968 , 0.43232402, -0.33761302, -0.01084888,
-0.08306244, -0.6389947 , -0.02747615, -0.69207895, -0.58695346],

[ 0.44832727, 0.1439877 , -0.01968908, 0.1745272 , -0.19021218,
0.38763624, -0.18479653, -0.4940335 , 0.22560808, 0.45554948]],

dtype=float32)>, <tf.Variable 'layer2/bias:0' shape=(10,)␣
↪→dtype=float32,

numpy=array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], dtype=float32)>]

They are implicitely initialised when creating the NN. Finally, let us use the NN as a
function and apply it to a couple of random Nx-vectors:

[7]: rng = np.random.default_rng(seed=seeds.pop(0))
x = rng.normal(loc=0, scale=1, size=(2, Nx))
print('input', x)
y = model(x)
print('output', y)

input [[-0.39530129 0.26391489 0.60712827]
[-0.9721598 0.76766425 0.25505812]]

output tf.Tensor(
[[ 0.0080108 -0.05308522 -0.05787446]
[-0.11240995 0.27459753 -0.16657892]], shape=(2, 3), dtype=float32)

2023-02-13 17:09:18.878082: I
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tensorflow/compiler/xla/stream_executor/cuda/cuda_blas.cc:630]␣
↪→TensorFloat-32

will be used for the matrix multiplication. This will only be logged once.

6.3.3 The true model dynamics: 3-variable Lorenz model

Now that we have defined our NN, let us define the true function. We choose it to be
the tendency of the chaotic Lorenz 1963 model, i.e. the right-hand side of its ordinary
differential system, or from a more physical standpoint, its velocity


dx

dt
= σ(y − x)

dy

dt
= ρx− y − xz

dz

dt
= xy − βz,

(6.23)

where σ = 10, β = 8/3, and ρ = 28. The map which, given the position, returns the
velocity is defined in python as

[8]: sigma = 10
beta = 8/3
rho = 28
def F(x):

y = np.empty(x.shape)
y[..., 0] = sigma*(x[..., 1]-x[..., 0])
y[..., 1] = rho*x[..., 0]-x[..., 1]-x[..., 0]*x[..., 2]
y[..., 2] = x[..., 0]*x[..., 1]-beta*x[..., 2]
return y

The Lorenz 1963 model has been introduced by the acclaimed meteorologist Edward
Lorenz as the examplar of the emergence of chaos in meteorology (Lorenz, 1963) Its
attractor has the famous nice butterfly shape as shown in Fig. 6.8
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Figure 6.8: Two departing trajectories of the Lorenz 1963 model that shapes the attractor
of the mnodel and its two wings.

6.3.4 Generating the training dataset

We want to learn the optimal set of weights and biases for the NN to fit the tendencies
and hence learn the dynamics of the model from observing one of his long, possibly noisy
trajectory. Ns = 2000 samples (or snapshots) are collected from a model trajectory.
Random errors are added to these observations. These samples are input/output couples
(xi, yi)1≤i≤Ns , with a time separation of ∆t = 0.1 model time unit (MTU).

Generating such trajectory of the L63 model, then observing regularly spaced snapshots
of this trajectory, with a normal i.i.d. observational noise ε ∼ n(0, r2I3), can be achieved
through the following basic code:

[9]: # Set random seed
rng = np.random.default_rng(seed=seeds.pop(0))

# Key parameters
Ns = 2000 # Number of samples
Nt_shift = 10 # Number of integration time steps between samples
dt = 0.01 # Integration time step for the Euler explicit method
Dt = 10 # Forecast lead time in units of dt
r = 1 # Observation stddev

# Spinup run length and data generating run length
Nt_spinup = 5000
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Nt_truth = Ns*Nt_shift+Dt

# Spinup L63 model run using the simplest explicit Euler integration␣
↪→method

x = rng.uniform(low=-10, high=10, size=Nx)
with tqdm(total=Nt_spinup, desc='spinup') as progress:

for i in range(Nt_spinup):
x += dt*F(x)
progress.set_postfix_str(x, refresh=False)
progress.update()

# Generate a noiseless trajectory of the L63 model
# using the explicit first-order Euler integration method
x_truth = np.empty((Nt_truth, Nx))
with tqdm(total=Nt_truth, desc='L63 trajectory') as progress:

for i in range(Nt_truth):
x += dt*F(x)
x_truth[i] = x
progress.set_postfix_str(x, refresh=False)
progress.update()

# Generate the data couples spaced by Dt (x_raw[i], y_raw[i])_{i=1,..,Ns}
x_perturb = x_truth + rng.normal(loc=0, scale=r, size=(Nt_truth, Nx))
x_raw = x_perturb[:Nt_truth-Dt:Nt_shift]
y_raw = x_perturb[Dt:Nt_truth:Nt_shift]

# Split into training and validation datasets,
# with 10% of the data being reserved for validation
index_train = np.array([i for i in range(Ns) if i%10])
index_valid = np.array([i for i in range(Ns) if not i%10])
x_train = x_raw[index_train]
y_train = y_raw[index_train]
x_valid = x_raw[index_valid]
y_valid = y_raw[index_valid]

spinup: 0%| | 0/5000 [00:00<?, ?it/s]

L63 trajectory: 0%| | 0/20010 [00:00<?, ?it/s]

[10]: utils.plot_l63_traj_truth_obs(
x_truth=x_truth,
x_raw=x_raw,
t_plot=10,
dt=dt,
Nt_shift=Nt_shift,
linewidth=18,
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)

6.3.5 The loss function

In order to learn some optimal weights and biases of the NN, N (ω, ·), we would like to
define then minimise the loss function (mean square error or mse)

L(ω) =
1

Ns

Ns∑
i=1

∥yi −N (ω,xi)∥2 . (6.24)

To implement this optimisation program, we need to set the parameters of the model
training, such as the choice of the minimisation method and the related hyperparameters.
To do so, the model must be compiled:

[11]: opt = tf.keras.optimizers.Adam(learning_rate=5e-3)
model.compile(optimizer=opt, loss="mse", metrics=["mae"])

where we choose the Adam minimisation method (a stochastic gradient method), the
mean square error (mse) loss, and choose for the validation a different metric, the mean
absolute error (mae):

V(N ) =
1

Ns

Ns∑
i=1

Nx∑
n=1

|[yi]n − [N (xi)]n| . (6.25)

Now, we can run the training using the Keras fit() method. Besides the input and output
vectors, we can specifiy the number of iterations of the minimisation, num_epochs, which
is the number of epochs. To do so, we can also specify the batch_size which tells how
many samples are samples are used at once in the miminisation, and we also provide the
validation dataset for cross-validation.

Introduction to data assimilation



6.3 Coding a neural network and its training with TensorFlow 95

6.3.6 The training of the NN surrogate model

[12]: tf.keras.utils.set_random_seed(seeds.pop(0))
num_epochs = 256
callback = [ utils.tqdm_callback(num_epochs, 'NN training') ]
history = model.fit(x_train, y_train,

epochs=num_epochs,
batch_size=64,
validation_data=(x_valid, y_valid),
verbose=0,
callbacks=callback)

NN training: 0%| | 0/256 [00:00<?, ?it/s]

6.3.7 Plotting the training and validation loss as a function of the epoch

[13]: utils.plot_learning_curve(
history.history['loss'],
history.history['val_loss'],
title='NN training',
linewidth=18,

)

Testing the surrogate model N (ω, ·) will be described in the second part of this lecture.
However, for now, we can observe that after the initial drops of the loss function, say before
50 epochs, the validation loss remains close to the training loss. This suggests that the
surrogate model is not prone to overfitting, and that it may generalise well.
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Chapter 7

Application to the dynamics of a
low-order chaotic model

In this chapter, we will apply standard machine learning methods to learn the dynamics
of the Lorenz 1996 model.

7.1 The Lorenz 1996 model

The Lorenz 1996 (L96, Lorenz and Emanuel 1998) is a low-order chaotic model commonly
used in data assimilation to asses the performance of new algorithms. It represents the
evolution of some unspecified scalar meteorological quantity (perhaps vorticity or temper-
ature) over a latitude circle.

The model dynamics is driven by the following set of ordinary differential equations
(ODEs):

∀n ∈ [1, Nx],
dxn
dt

= (xn+1 − xn−2)xn−1 − xn + F, (7.1)

where the indices are periodic: x−1 = xNx−1, x0 = xNx , and x1 = xNx+1, and where the
system size Nx can take arbitrary values.

In the standard configuration, Nx = 40 and the forcing coefficient is F = 8. The ODEs are
integrated using a fourth-order Runge-Kutta scheme with a time step of 0.05 model time
unit (MTU). The resulting dynamics is chaotic with a doubling time of errors around
0.42 MTU (the corresponding Lyapunov is hence 0.61 MTU). For comparison, 0.05 MTU
represent six hours of real time and correspond to an average autocorrelation around 0.967.
Finally, the model variability (spatial average of the time standard deviation per variable)
is 3.64.

7.2 The true model dynamics

In this series of experiments, we will try to emulate the dynamics of the L96 model using
artificial neural networks (NN).
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1. We start by running the true model to build a training dataset,

2. We build and train a NN using this dataset,

3. We evaluate the forecast skill of the surrogate model (the NN).

7.2.1 Importing all modules

[2]: import numpy as np
import tensorflow as tf
from tqdm.auto import tqdm, trange

import utils

utils.set_style()
seeds = [3, 31, 314, 3141, 31415, 314159, 3141592, 31415926]

7.2.2 Defining the neural network model

In the following cell, we define the true Lorenz 1996 model using standard values: - the
number of variables Nx is set to Nx=40; - the forcing coefficient F is set to F=8; - the
integration time step is set to dt=0.05.

[3]: # create model
true_model = utils.Lorenz1996Model(Nx=40, dt=0.05, F=8)

# save some statistics about the model
true_model.model_var = 3.64
true_model.doubling_time = 0.42
true_model.lyap_time = 0.61

7.2.3 Short model integration

In the following cells, we perform a rather short model integration, in order to illustrate
the model dynamics. The initial condition is a random field.

[4]: # define rng
rng = np.random.default_rng(seed=seeds.pop(0))

# allocate memory
Nt_plot = 500
xt_plot = np.zeros((Nt_plot+1, true_model.Nx))

# initialisation and integrate
xt_plot[0] = rng.normal(loc=3, scale=1, size=true_model.Nx)
for t in trange(Nt_plot, desc='model integration'):

xt_plot[t+1] = true_model.forward(xt_plot[t])
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model integration: 0%| | 0/500 [00:00<?, ?it/s]

[5]: utils.plot_l96_traj(
xt_plot,
true_model,
linewidth=18,

)

We see first a spin-up period of about 1 MTU, where the initial condition is progressively
forgotten and the trajectory progressively gets back to the model attractor. After this
spin-up period, the dynamics is characterised by waves moving slowly towards the east
(i.e. decreasing variable index).

7.3 Prepare the dataset

7.3.1 A long model integration for the training data

We now use a true model trajectory to make the training dataset. This trajectory starts
from a random field (different than for the plotting trajectory) and we discard the first 100
time steps to get rid of the spin-up process.

[6]: # define rng
rng = np.random.default_rng(seed=seeds.pop(0))

# allocate memory
Nt_train = 10000
Nt_spinup = 100
xt_train = np.zeros((Nt_train+1, true_model.Nx))

# initialisation and spin-up
xt_train[0] = rng.normal(loc=3, scale=1, size=true_model.Nx)
for t in trange(Nt_spinup, desc='spin-up integration'):
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xt_train[0] = true_model.forward(xt_train[0])

# model integration
for t in trange(Nt_train, desc='model integration (train)'):

xt_train[t+1] = true_model.forward(xt_train[t])

spin-up integration: 0%| | 0/100 [00:00<?, ?it/s]

model integration (train): 0%| | 0/10000 [00:00<?, ?it/s]

7.3.2 Preprocess the training data

The training dataset is made of input/output pairs, where the input is the state at a given
time, and the output is the state at the following time.

[7]: # make input/output pairs: input = xt[t], output = xt[t+1]
x_train_raw = xt_train[:-1]
y_train_raw = xt_train[1:]

The training dataset is then normalised and split into training and validation data. For
our experiments, we keep one tenth of the data for validation.

[8]: # normalise the training data using numpy's broadcasting rules
x_mean = x_train_raw.mean(axis=0)
y_mean = y_train_raw.mean(axis=0)
x_std = x_train_raw.std(axis=0)
y_std = y_train_raw.std(axis=0)
def normalise_x(x):

return (x - x_mean)/x_std
def normalise_y(y):

return (y - y_mean)/y_std
def denormalise_x(x_norm):

return x_norm*x_std + x_mean
def denormalise_y(y_norm):

return y_norm*y_std + y_mean
x_train_raw_norm = normalise_x(x_train_raw)
y_train_raw_norm = normalise_y(y_train_raw)

# split into training / validation
index_train = np.array([i for i in range(Nt_train) if i%10])
index_valid = np.array([i for i in range(Nt_train) if not i%10])
x_train_norm = x_train_raw_norm[index_train]
y_train_norm = y_train_raw_norm[index_train]
x_valid_norm = x_train_raw_norm[index_valid]
y_valid_norm = y_train_raw_norm[index_valid]

Introduction to data assimilation



7.3 Prepare the dataset 101

7.3.3 A shorter model integration for the test data

We repeat the same process to make the test dataset. In this case, the trajectory starts
from another random field (and we still get rid of the spin-up process) and can be somewhat
shorter, but the normalisation must be the same as for the training dataset.

[9]: # define rng
rng = np.random.default_rng(seed=seeds.pop(0))

# allocate memory
Nt_test = 1000
Nt_spinup = 100
xt_test = np.zeros((Nt_test+1, true_model.Nx))

# initialisation and spin-up
xt_test[0] = rng.normal(loc=3, scale=1, size=true_model.Nx)
for t in trange(Nt_spinup, desc='spin-up integration'):

xt_test[0] = true_model.forward(xt_test[0])

# model integration
for t in trange(Nt_test, desc='model integration (test)'):

xt_test[t+1] = true_model.forward(xt_test[t])

# make input/output pairs: input = xt[t], output = xt[t+1]
x_test = xt_test[:-1]
y_test = xt_test[1:]

# normalise the test data using numpy's broadcasting rules
x_test_norm = normalise_x(x_test)
y_test_norm = normalise_y(y_test)

spin-up integration: 0%| | 0/100 [00:00<?, ?it/s]

model integration (test): 0%| | 0/1000 [00:00<?, ?it/s]

7.3.4 An ensemble model integration for the forecast skill data

In order to assess the forecast skill of the surrogate model, we will use a different test
dataset, in which we record an ensemble of trajectories (instead of an ensemble of in-
put/output pairs). This will allow us to measure the accuracy of the forecast for longer
integration times.

[10]: # define rng
rng = np.random.default_rng(seed=seeds.pop(0))

# allocate memory
Nt_fs = 400
Nt_spinup = 100
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Ne_fs = 512
xt_fs = np.zeros((Nt_fs+1, Ne_fs, true_model.Nx))

# initialisation and spin-up
xt_fs[0] = rng.normal(loc=3, scale=1, size=(Ne_fs, true_model.Nx))
for t in trange(Nt_spinup, desc='spin-up integration'):

xt_fs[0] = true_model.forward(xt_fs[0])

# model integration
for t in trange(Nt_fs, desc='model integration (ensemble)'):

xt_fs[t+1] = true_model.forward(xt_fs[t])

spin-up integration: 0%| | 0/100 [00:00<?, ?it/s]

model integration (ensemble): 0%| | 0/400 [00:00<?, ?it/s]

7.4 The baseline model: persistence

In this first test series, we use persistence as surrogate model. This will provide baselines
for our NN results. Persistence is defined as the model for which there is no time evolution.

7.4.1 Evaluate the model

The mean square error (MSE) is the loss function that we will use to train our NNs later.
Therefore, the test MSE is a measure of the efficiency of the learning/training process.

The test MSE of persistence is a number whose absolute value is not that important per se
(because the input and output data have been normalised) but it will be useful to normalise
the test MSE of our trained NNs.

[11]: # compute test MSE
test_mse_baseline = np.mean(np.square(y_test_norm - x_test_norm))

# compute forecast skill
fs_baseline = np.sqrt(np.mean(np.square(xt_fs-xt_fs[0]), axis=2))

# show test MSE
print(f'test mse of persistence = {test_mse_baseline}')

test mse of persistence = 0.06183308040943624

7.4.2 Example of surrogate model integration

In the following cell, we show one example of model integration.

[12]: utils.plot_l96_compare_traj(
xt_fs[:, 0],
np.broadcast_to(xt_fs[0, 0], shape=xt_fs[:, 0].shape),

Introduction to data assimilation



7.4 The baseline model: persistence 103

true_model,
linewidth=18,

)

7.4.3 Forecast skill

In the following cell, we plot the average forecast skill, normalised by the model variability.
The shadow delimits the 90% confidence interval (percentiles 5 and 95).

[13]: utils.plot_l96_forecast_skill(
dict(
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persistence=fs_baseline,
),
true_model,
p1=5,
p2=95,
xmax=4,
linewidth=18,

)

The error rapidly grows as time evolves. After about 1 Lyapunov time, the error oscillates
around

√
2, which is the theoretical asymptotic value due to the normalisation and which

is consistent with the wave behaviour of the dynamics.

7.5 A naive ML model

7.5.1 Construct and train the model

In this second test series, we train and evaluate a dense NN (sequential NN with only dense
layers). In order to create this model, we use the sequential API of tensorflow as follows.

[14]: def make_sequential_network(num_layers, num_nodes, activation):
# create a sequential network
network = tf.keras.models.Sequential()
# add the input layers
network.add(tf.keras.Input(shape=(true_model.Nx,)))
# add the internal layers
for i in range(num_layers):
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network.add(tf.keras.layers.Dense(num_nodes,␣
↪→activation=activation))

# add the output layer without activation
network.add(tf.keras.layers.Dense(true_model.Nx))
return network

In the following cell, we actually build a dense NN with 4 internal layers and 128 nodes
per layer. The total number of parameters of this model is 59944. This is actually quite
large for a 40-variable system. This is because the dense architecture is rather “inefficient”
in terms of parameters.

[15]: # set seed
tf.keras.utils.set_random_seed(seeds.pop(0))

# define the NN
num_layers = 4
num_nodes = 128
activation = 'relu'
naive_network = make_sequential_network(num_layers, num_nodes, activation)

# compilation
naive_network.compile(loss='mse', optimizer='adam')

# print short summary
naive_network.summary()

Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #

=================================================================
dense (Dense) (None, 128) 5248

dense_1 (Dense) (None, 128) 16512

dense_2 (Dense) (None, 128) 16512

dense_3 (Dense) (None, 128) 16512

dense_4 (Dense) (None, 40) 5160

=================================================================
Total params: 59,944
Trainable params: 59,944
Non-trainable params: 0
_________________________________________________________________

In the following cell, we actually train the model for 256 epochs. Going beyond part I, we
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use an EarlyStopping callback to end the training when the validation loss stops improving.
This should avoid overfitting.

[16]: # train the ML model
tf.keras.utils.set_random_seed(seeds.pop(0))
num_epochs = 256
tqdm_callback = utils.tqdm_callback(num_epochs, 'naive NN training')
early_stopping_callback = tf.keras.callbacks.EarlyStopping(

monitor='val_loss',
patience=16,
verbose=0,
restore_best_weights=True,

)
fit_naive = naive_network.fit(

x_train_norm,
y_train_norm,
verbose=0,
epochs=num_epochs,
validation_data=(x_valid_norm, y_valid_norm),
callbacks=[tqdm_callback, early_stopping_callback],

)

naive NN training: 0%| | 0/256 [00:00<?, ?it/s]

In the following cell we plot the training history, that is, the evolution of the training MSE
(the loss) and the validation MSE (the val_loss) as a function of the number of epochs.

[17]: utils.plot_learning_curve(
fit_naive.history['loss'],
fit_naive.history['val_loss'],
title='Naive NN training',
linewidth=18,

)
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Both values are visually closely related. The validation MSE is more noisy than the training
MSE, which is expected because the training data is nine times as large as the validation
data. After several epochs, the validation MSE gets a bit higher than the training MSE.
This is explained by the fact that this data is not used in the gradient descent algorithm.
Finally, at the end the validation MSE stops improving. This is the sign that the model is
starting to overfit the training data and that we should stop the training.

7.5.2 Evaluate the model

We now compute the test MSE to evaluate our surrogate model.

[18]: # compute test MSE
test_mse_naive = naive_network.evaluate(x_test_norm, y_test_norm,␣
↪→verbose=0, batch_size=Nt_test)

# compute forecast skill
xt_naive = np.zeros(xt_fs.shape)
xt_naive[0] = xt_fs[0]
for t in trange(xt_naive.shape[0]-1, desc='naive surrogate model␣
↪→integration'):

x_norm = normalise_x(xt_naive[t])
y_norm = naive_network.predict(x_norm, batch_size=Ne_fs, verbose=0)
xt_naive[t+1] = denormalise_y(y_norm)

fs_naive = np.sqrt(np.mean(np.square(xt_fs-xt_naive), axis=2))

# show test MSE
print(f'test mse of persistence = {test_mse_baseline}')
print(f'test mse of naive model = {test_mse_naive}')
print()
print(f'relative test mse of naive model = {test_mse_naive/
↪→test_mse_baseline}')

naive surrogate model integration: 0%| | 0/400 [00:00<?, ?it/s]

test mse of persistence = 0.06183308040943624
test mse of naive model = 0.011359243653714657

relative test mse of naive model = 0.18370819597694088

We obtain a reduction of about 80%, which is already quite good, but we will see later
that it is possible to do much better.

7.5.3 Example of surrogate model integration

In the following cell, we show once again one example of model integration.

[19]: utils.plot_l96_compare_traj(
xt_fs[:, 0],
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xt_naive[:, 0],
true_model,
linewidth=18,

)

The error is lower than in the first test series, but only during the first few integration
steps.

7.5.4 Forecast skill

In the following cell, we plot once again the average forecast skill, normalised by the model
variability.
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[20]: utils.plot_l96_forecast_skill(
dict(

persistence=fs_baseline,
naive=fs_naive,

),
true_model,
p1=5,
p2=95,
xmax=4,
linewidth=18,

)

This curve confirms that the naive surrogate model is more accurate than persistence for
one integration step, and that it remains more accurate until about 2 Lyapunov times.

7.6 A smart ML model

7.6.1 Build and train the model

In this third and last test series, we train and evaluate a smart NN. This NN uses a sparse
architecture with convolutional NN and controlled nonlinearity to reproduce the model
tendencies, as well as a Runge-Kutta integration scheme to emulate the dynamics. In
order to implement this NN, we use both the functional API (for the model tendency) and
the subclassing API (for the integration scheme) of tensorflow.

[21]: class SmartNetwork(tf.keras.Model):

def __init__(self, num_filters, kernel_size, dt=0.05, **kwargs):
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super(SmartNetwork, self).__init__(**kwargs)
self.dt = dt

# reshape layers
reshape_input = tf.keras.layers.Reshape((true_model.Nx, 1))
reshape_output = tf.keras.layers.Reshape((true_model.Nx,))

# padding layer
border = kernel_size//2
def apply_padding(x):

x_left = x[..., -border:, :]
x_right = x[..., :border, :]
return tf.concat([x_left, x, x_right], axis=-2)

padding_layer = tf.keras.layers.Lambda(apply_padding)

# convolutional layers
conv_layer_1 = tf.keras.layers.Conv1D(num_filters, kernel_size)
conv_layer_2 = tf.keras.layers.Conv1D(1, 1)

# network for the model tendencies
x_in = tf.keras.Input(shape=(true_model.Nx,))
x = reshape_input(x_in)
x = padding_layer(x)
x1 = conv_layer_1(x)
x2 = x1 * x1
x3 = tf.concat([x1, x2], axis=-1)
x_out = conv_layer_2(x3)
x_out = reshape_output(x_out)
self.tendency = tf.keras.Model(inputs=x_in, outputs=x_out)

@tf.function
def call(self, x):

dx_dt_0 = self.tendency(x)
dx_dt_1 = self.tendency(x+0.5*self.dt*dx_dt_0)
dx_dt_2 = self.tendency(x+0.5*self.dt*dx_dt_1)
dx_dt_3 = self.tendency(x+self.dt*dx_dt_2)
dx_dt = (dx_dt_0 + 2*dx_dt_1 + 2*dx_dt_2 + dx_dt_3)/6
return x + self.dt*dx_dt

[22]: # set seed
tf.keras.utils.set_random_seed(seeds.pop(0))

# define the NN
num_filters = 6
kernel_size = 5
smart_network = SmartNetwork(num_filters, kernel_size, dt=true_model.dt)
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# compilation
smart_network.compile(loss='mse', optimizer='adam')

# print short summary
smart_network.tendency.summary()

Model: "model"
________________________________________________________________________________
__________________
Layer (type) Output Shape Param # Connected␣
↪→to

================================================================================
==================
input_2 (InputLayer) [(None, 40)] 0 []

reshape (Reshape) (None, 40, 1) 0
['input_2[0][0]']

lambda (Lambda) (None, 44, 1) 0
['reshape[0][0]']

conv1d (Conv1D) (None, 40, 6) 36
['lambda[0][0]']

tf.math.multiply (TFOpLambda) (None, 40, 6) 0
['conv1d[0][0]',
'conv1d[0][0]']

tf.concat (TFOpLambda) (None, 40, 12) 0
['conv1d[0][0]',
'tf.math.multiply[0][0]']

conv1d_1 (Conv1D) (None, 40, 1) 13
['tf.concat[0][0]']

reshape_1 (Reshape) (None, 40) 0
['conv1d_1[0][0]']

================================================================================
==================
Total params: 49
Trainable params: 49
Non-trainable params: 0
________________________________________________________________________________
__________________
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The total number of parameters is only 49. Furthermore in this case, with well-chosen
parameters it is possible to reproduce the true dynamics up to machine precision: the
model is said to be identifiable. Also note that this network is built in such a way that
we don’t need the input and output data to be normalised.

In the following cell, we actually train the model for up to 128 epochs. Once again, we use
an EarlyStopping callback to end the training when the validation loss stops improving in
order to avoid overfitting.

[23]: # train the ML model
tf.keras.utils.set_random_seed(seeds.pop(0))
num_epochs = 128
tqdm_callback = utils.tqdm_callback(num_epochs, 'smart NN training')
early_stopping_callback = tf.keras.callbacks.EarlyStopping(

monitor='val_loss',
patience=16,
verbose=0,
restore_best_weights=True)

fit_smart = smart_network.fit(
denormalise_x(x_train_norm),
denormalise_y(y_train_norm),
verbose=0,
epochs=num_epochs,
validation_data=(denormalise_x(x_valid_norm),␣

↪→denormalise_y(y_valid_norm)),
callbacks=[tqdm_callback, early_stopping_callback])

smart NN training: 0%| | 0/128 [00:00<?, ?it/s]

2023-02-13 17:29:53.164812: I
tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc:428] Loaded cuDNN
version 8401

In the following cell we plot the training history.

[24]: utils.plot_learning_curve(
fit_smart.history['loss'],
fit_smart.history['val_loss'],
title='Smart NN training',
linewidth=18,

)
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Once again, the training and validation MSE are visually closely related. However, by
contrast with the previous test series, after about 30 epochs, the MSEs have decreased to
10−12, which should be very close to the numerical precision zero (tensorflow is working
on simple precision for real numbers). Passed 30 epochs, the MSEs oscillate at very low
values. This behaviour can be considered as numerical noise.

7.6.2 Evaluate the model

We now compute the test MSE to evaluate our surrogate model.

[25]: # compute test MSE
y_test_smart = smart_network.predict(denormalise_x(x_test_norm),␣
↪→batch_size=Nt_test, verbose=0)

test_mse_smart = np.mean(np.square(normalise_y(y_test_smart)-y_test_norm))

# compute forecast skill
xt_smart = np.zeros(xt_fs.shape)
xt_smart[0] = xt_fs[0]
for t in trange(xt_smart.shape[0]-1, desc='smart surrogate model␣
↪→integration'):

xt_smart[t+1] = smart_network.predict(xt_smart[t], batch_size=Ne_fs,␣
↪→verbose=0)

fs_smart = np.sqrt(np.mean(np.square(xt_fs-xt_smart), axis=2))

# show test MSE
print(f'test mse of persistence = {test_mse_baseline}')
print(f'test mse of naive model = {test_mse_naive}')
print(f'test mse of smart model = {test_mse_smart}')
print()
print(f'relative test mse of naive model = {test_mse_naive/
↪→test_mse_baseline}')

print(f'relative test mse of smart model = {test_mse_smart/
↪→test_mse_baseline}')
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smart surrogate model integration: 0%| | 0/400 [00:00<?, ?it/s]

test mse of persistence = 0.06183308040943624
test mse of naive model = 0.011359243653714657
test mse of smart model = 2.8139790552492487e-15

relative test mse of naive model = 0.18370819597694088
relative test mse of smart model = 4.550928138491726e-14

The test MSE is sufficiently close to zero so that we can consider that our surrogate model
reproduces the true model dynamics up to numerical precision.

7.6.3 Example of surrogate model integration

In the following cell, we show once again one example of model integration.

[26]: utils.plot_l96_compare_traj(
xt_fs[:, 0],
xt_smart[:, 0],
true_model,
linewidth=18,

)
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This time, the error is so low that it is not visible until about 6 MTU. At that time,
the true model trajectory and the surrogate model trajectory diverge from each other.
Indeed, the two models are equivalent up to numerical precision, but they are not bit-wise
equivalent, which means that this divergence is unavoidable because of the chaotic nature
of the dynamics.

7.6.4 Forecast skill

In the following cell, we plot once again the average forecast skill, normalised by the model
variability.
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[27]: utils.plot_l96_forecast_skill(
dict(

persistence=fs_baseline,
naive=fs_naive,
smart=fs_smart,

),
true_model,
p1=5,
p2=95,
xmax=30,
linewidth=18,

)

This curve confirms that the the smart surrogate model is equivalent to the true model up
to numerical precision. The numerical divergence between the true and surrogate model
happens on average after about 10 Lyapunov times.
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