
Chapter 6

Proposals for Web Server Cooperation

As the number of publicly available Web pages increases, the problem of keeping a search engine index up-

to-date with changes becomes increasingly more difficult [LG99], and it is common to find several pages out-

dated in current search engines [SS04]. This makes things more difficultfor the user who seeks information

and affects the image of the search engine, but this also has costs for the Web sites that are misrepresented,

if we consider the whole user experience.

If a user searches for a keyword on a search engine, and then chooses a page from the search results that

no longer exists, or that contains material that is currently irrelevant for the user’s information need, the user

will be frustrated with both the search engineand the Web sitefor not finding this information. There is also

an opportunity cost related to these visitors: maybe the information they want was moved to another page in

the same website and the search engine was not aware of the change. In this case, it would be better for the

Web site to inform the search engine of the update.

Web crawlers can use an important amount of network and processor resources from the Web server,

especially if they do not follow existing rules of “good behavior” [Kos95]. Web crawlers tend to visit many

more pages than humans, and they request them very fast, normally with 10 to30 seconds between visits;

so they are believed to account for at least 16% of the requests [MAR+00]. Many of the requests are to

unmodified resources, and can be avoided in certain schemes if the server informs the crawler about which

resources have not been modified since its last visit.

Hence, an Web site administrator has incentives to improve the representationof his Web site in the

search engine’s index and to prevent unnecessary visits from crawlers. The mechanism for accomplishing

this is what we call acooperationscheme between the Web server and the Web crawler.

In this chapter we show some existing techniques for cooperation, and we propose new ones; some of

the techniques shown here were not designed for this specific purposebut they can be adapted. We also

present a discussion about the relative merits of each technique. Finally,we implement one of them in the

WIRE crawler.

1

The next section presents general aspects about cooperation schemes, Section 6.2 presents polling-based

schemes, and Section 6.3 presents interruption-based schemes. Section 6.4 shows a relative comparison of

costs. Section 6.5 describes how a cooperation scheme was implemented in the WIRE crawler. The last

section presents the conclusions and future work.

Portions of this chapter were presented in [Cas03].

6.1 Cooperation schemes

The standard HTTP transaction follows the request-response paradigm:a client requests a page from a Web

server, and the Web server responds with the page, as depicted in Figure 6.1. This transaction involves

meta-data (information about the page) that is downloaded along with the actual page contents.

Figure 6.1: Schematic drawing of a normal transaction between a Web crawler (“C” on the

left) and a Web server (“S” on the right). The large, dark circle in the middle represents a

Web page and the small, light circle represents its meta-data. The arrow from the Web page to

the Web crawler indicates that the Web crawler initiates theconnection. We use this pictorial

representation in the next two figures.

The cooperation schemes we study in this thesis can be divided into two groups: polling andinterrupt.

Polling (or pull) schemes: the Web crawler periodically requests data from the Web server based on a

scheduling policy. These requests check if a page have been changed,and then download the page.

Interrupt (or push) schemes: in this case the Web server begins a transaction with the search engine when-

ever there is an event. These events can happen when one or multiple pages are updated, based on

server policies. The search engines must subscribe to the servers from which they want to receive

events. This is similar to the relationship between the main processor and a hardware device (network

card, scanner, etc.) in a modern computer.

Note that polling becomes equivalent to an interrupt when the polling period tends to zero; but the usage

of resources at both ends of the polling line increase at the same time.

In this thesis, we study several cooperation schemes, which are summarized on Table 6.1.

2

Transfered data Polling version Interrupt version

Meta-data Serve meta-data of content Send meta-data of updates

Differences of site Serve differences of content Send differencesof content

Pages Serve pages only if modified Send changed pages

Batches of pages Serve many pages per request Send batch update

Site Serve entire site compressed Send entire site

Mixed Filtering interface Remote agent

Table 6.1: List of cooperation schemes analyzed in this thesis. All of them have two versions:

polling (poll) and interrupt (push).

Before we get into the details of each scheme, there are some issues we mustmention that are almost

independent of the scheme used:

Compressioncan be used for decreasing transmission cost at the expense of using more processing

power on the server side. On the current Web, compression is used fortransferring most images –because

they are usually stored in a compressed format– but normally it is not applied for textual Web pages. The

HTTP/1.0 protocol considers requests of compressed bodies using theAccept-encoding header, so com-

pressing Web-pages can be used but it is usually left to the communication between the ISP and the final

user. Compression can be used with complete Web pages, bundles of Web pages and their resources, or Web

page differences [?] (more details in Section 6.2).

Privacy issuesarise when the crawler has access to information in the server that was notmeant to be

public. This may sound strange, but in practice when using a Web crawler itis possible to download files

that are linked by mistake or private directories that allow a virtual listing; we have even found complete

plain-text password files!. Many Web site administrators mistakenly believe that by not publishing the URL

of a Web page they can keep the page private. This is a common practice, somost Web site administrators

are very reluctant to provide access for clients to list the contents of directories. Note that if users follow an

external link from one of these “private” pages, their browser will inform the referrer to the next Web site,

and this referrer could be logged and inspected so it is pointless to try to keep unknown URLs private.

Index update capabilitiesare very reduced in global-scale Web search engines: constraints in terms

of disk space are the most important limitation, so it is not always possible to store a complete copy of the

downloaded pages. This can lead to some difficulties; for instance, on a standard inverted index, removing

a page or updating a paragraph without having the complete text can be impossible or very time-consuming.

Also, in many cases updating batches of pages is preferred to updating single pages to reduce the overall

processing cost.

Search engine “spamming”occurs whenever Web site administrators try to get undeserved high rat-

3

Figure 6.2: Diagrams of polling-based cooperation. The arrow between the Web crawler “C”

and the Web server “S” represents who initiates the connection. The small, white circle repre-

sents meta-data and the large, gray circle represents the contents of the page.

ings in search engines. Data provided by Web servers cannot be trusted completely, for instance, in terms

of self-asserted frequency of updates of the pages or local page importance. Web crawlers used by most

search engines are interested only in some of the pages of a Web site, and the decision of which pages must

be added to the index should be left to the search engine. In notification schemes, a degree of trust can be

established, e.g.: if a Web site sends update notifications, but when pages are inspected by the Web crawler

they have not changed, then the search engine can ignore further notifications from that Web site for a period

of time.

Structure and HTML markup used in a Web site affects the visibility of its pages by search engine

crawlers. Information that is accessible only through forms is, in general,difficult to gather for Web crawlers;

this is called the “hidden Web” [RGM01]. Web sites could attract more visitors ifthey provide a crawler-

friendly interface for this data to be indexed by search engines.

6.2 Polling-based cooperation

In all these cases, the Web crawler queries the Web server with certain periodicity; the cooperation schemes

discussed in this section are depicted in Figure 6.2.

4

Serve meta-data of updates. A file containing last-modification data (and probably file size and path)

is served. This file can contain a description of many pages on the Web site. In the case of single files,

the HTTP protocol providesHEAD requests that are responded with meta-data about the requested object.

Multiple HEAD requests can be pipelined, but this is not as efficient as serving a concise file. Examples: the

Distribution and Replication Protocol (DRP) [vHGH+97], the proposal by Brandmanet al. [BCGMS00] in

which files containing information about changes are served, and the proposal by Buzzi [Buz03] that includes

information obtained from the access log files. RDF [LS99] also includes thepossibility of informing time-

related data about the resources.

Finally, the HTTPExpires: header presents a way of informing the crawler of the next change in a

Web page, but this involves prediction and therefore is not widely used.

Serve differences of content. The Web server provides a series of differences between a base version and

newer versions. In the most simple case, the difference is only between thelast and the current version.

Examples: the HTTP Delta responses proposed by Mogulet al. [MDFK97] that use theContent-encoding

field of HTTP responses, however, a disadvantage is that servers must retain potentially many different

versions of their Web pages and that it can only be used for Web pages that have already been visited.

Another disadvantage is that re-visits account for a small fraction of the total downloads, so this cannot be

used for all pages.

Savant and Suel [?] study the possibility of delta-encoding Web pages with respect to other similar

Web pages in the same server that are already in a client’s cache, which gives a lower compression ratio

but imposes less workload on the Web server and can be used for a larger fraction of the accesses. In their

approach these differences are also compressed. See the survey bySuel and Memon [?] for a summary of

techniques for delta compression for remote synchronization of files.

An example of delta compression being used in practice is that source code for popular free software can

be updated using thepatch [WEDM00] program, with servers providing differences between the original

version and the new version. For Web sites, differences in terms of structural changes in the links, can be

encoded using tables as inWHOWEDA[BMN03].

Serve pages only if modified. The Web crawler can avoid downloading a file if the file has not been

modified. Examples: in HTTP/1.0 this is done using a date the crawler provides (usually the last visit to

the same page) in anIf-Modified-Since header; these headers are used only by a minority of crawlers

[BCGMS00], although they are supported by most Web servers. In HTTP/1.1, anentity-tag(E-Tag) can be

provided: this is a hash function of the text of the document.

Serve multiple pages on one request.The overhead arising from multiple TCP connections can be avoided

by requesting a series of pages in the same connection. Example: this is usual for modern Web browsers,

5

and is implemented using theConnection header with thekeep-alive value in HTTP/1.1 [FGM+99]; in

this case, pipelining of the requests can also be used. With pipelining, the user agent requests multiple

pages without waiting for a response, and then receives multiple responses in the same order as they were

requested.

Serve entire site in a large file. This is suitable only if the Web changes occur in many pages, or if the

Web site is composed of many small files. Example: typically, Linux distributions are distributed in whole

CD- or DVD-sized disk images and not on a file-by-file basis.

Filtering interfaces. This is a standard method for answering queries from the crawler. The typical query

a Web crawler could ask is “give me all the pages that have changed sincethis date”. A more powerful

filtering interface could also include requests for differences, or querying about other characteristics such as

page sizes or local importance. Examples: DASL [RRDB02] for searching Web servers, RSYNC [TP03]

for mirroring content, and the Common Index Protocol (CIP) [AM99]. In WebDAV [web04], thePROPFIND

method allows to query for properties of a document, and a proposed extension BPROPFIND for querying

about groups of documents. A generic filtering interface could also be implemented using a Web Service

[CCMW01].

6.3 Interruption-based cooperation

In all these cases, the Web server sends data to the Web server whenever there is an update (page change,

deletion or new page). The Web crawlers must subscribe with the Web server to start receiving notifications,

and when they receive them, they can choose to process, enqueue or ignore them.

The following cooperation schemes are depicted in Figure 6.3:

Send meta-data of updates. The notification includes only meta-data about the update, as a minimum,

the URL of the resource and a timestamp of the event would be required. Examples: the Keryx [BK97]

notification service, developed during the apogee of push-based content delivery, and the Fresh Flow proposal

for Web server cooperation [GC01].

Send differences of content. Whenever an event happens, the Web server sends a file containing thedif-

ference between the last version and the current one (if the changes are major, the Web server may send the

entire file). This exploits the fact that most page changes are minor, e.g.: after one year, 50% of changed

pages have changed less than 5% [NCO04]. Example: CTM [Kam03]: in thiscase, differences on a repos-

itory of source code are sent to interested users by electronic mail and thereceivers automatically execute

6

Figure 6.3: Diagrams of interruption-based schemes of cooperation. Connections are initiated

by the server-side (right) and handled by the crawler (left).

thepatch [WEDM00] program to apply the update to the local copy. In CTM, every 50 relative “deltas”, a

complete base set is sent.

Send changed pages.The Web server sends the complete text of each updated or new page when the

modifications are made. Examples: this was typical in push technologies [KNL98], and was implemented in

services like “Marimba Castanet” and “Pointcast” in the early days of the Web. Currently, it is being used in

wireless devices [Cha02].

Send multi-pages updates. The Web server sends batches of modified pages according to some schedule.

This can be useful if the updates are regular and involve several pages; for example, in the Web site of a daily

or weekly newspaper. This is the idea behind the protocol used for keeping pages updated in mobile devices

used by AvantGO [ava04], in which a single device receives a compressed bundle of pages from several Web

sites.

Send entire site. The Web server sends the entire site. This is useful, for instance, for uploading an entire

Web site when the site is publicly available for the first time, or if there is a major modification involving

most of the pages, as an extension of the previous scheme.

7

Strategy Network Processing Processing Freshness

cost (server) (crawler) improvement

Send meta-data of updates + + High

Send differences of content – – + + + High

Send changed pages – + High

Send batch update + + High

Send entire site + + + High

Remote agent – – + + – High

Serve meta–data of content + + Normal

Serve differences of content – – + + + Normal

Serve pages only if modified – Normal

Serve many pages in one request – Normal

Serve entire site compressed + + + Normal

Filtering interface – – + + – High

Table 6.2: Relative costs of server cooperation schemes discussed, against the base case where

no cooperation exists: “+” means more cost, “−” means less cost. The last column is the

expected improvement in freshness for the search engine’s collection

Remote agent. The Web server executes software provided by the search engine; thissoftware includes

instructions to identify important pages and to detect changes in the pages that are relevant for the search en-

gine. Important pages can be identified based on local connectivity, textual information, or log file analysis.

Changes can be detected using a custom algorithm that varies depending on the search engine’s characteris-

tics. When there is a change, the agent sends back some data to the searchengine. This can be meta-data,

complete pages, or differences. This is a typical application for a mobile agent [LO99], and the cooperation

can be taken one step further, as in some cases the agent could help the search engine by fetching data from

“near” servers, as proposed by Theilmann and Rothermel [TR99].

6.4 Cost analysis

6.4.1 Costs for the Web server

We will consider unitary (per-page) costs and benefits:

• b: Benefit from a user viewing one page, from advertising revenues orfrom other sources.

• cn: Network cost for serving one page, i.e.: bandwidth cost.

8

• cp: Processing cost for serving one page, i.e.: servers cost.

A simple observation is that we should have (in theory)b ≥ cn + cp, otherwise, the Web site would

not be able to pay the operation costs. However, we should note that some Web sites can be financed by

revenues from other sources. Another observation is that in generalprocessing capacity is cheaper than

network connectivity, so in generalcn > cp.

Estimates: We cannot measure these quantities, but we can make some estimates: as of 2004, the cost

per page-view of an advertising campaign on the Web is about US$ 0.05, soit is likely that b ≥ 0.05. On

the other end, having a Web server costs about US$ 10 for 5 gigabits of traffic, or 625Mb; if each page

including images is 40Kb on average, this is enough for 15,000 page-views; notice that network bandwidth

is usually “overbooked” in popular virtual servers, probably by a factor or 2 or 3, so an estimate of the cost

is: cn +cp ≤ 0.002. Serving pages to a Web crawler is cheaper because the Web crawler does not download

the images.

This is a very rough estimate, but it reveals something interesting: if we only account for Web server

usage, serving a Web page costs at most 1/25 of the benefit, and this is probably the biggest cause of the

huge success of the World Wide Web as a platform for publishing information. The main source of cost

when keeping a large Web site is not the Web hosting, but rather the cost ofproducing and maintaining its

contents.

In Table 6.2 we provide a rough estimation of relative costs associated with these cooperation schemes.

Network bandwidth savings are the product of not dealing with unnecessary requests from the crawlers,

and costs, from sending more than is necessary. Processing costs involve keeping meta-data, calculating

differences, or more complex processing. Benefits arise from increased freshness on the Web search engine,

and are higher if an interruption (push) is involved.

Which is the best strategy for the Web server? This will depend on the price the Web server is willing

to pay; if this is minor, then using server software that correctly implements HTTP/1.1 is the best option. If

the price is moderate, then serving and sending meta-data of updates is the best option. If the server wishes

to invest more resources, it can benefit from providing content differences and/or a filtering interface for the

crawlers.

6.4.2 Costs for the crawler

The main costs for the crawler for each page are:

• Polling or receiving an interrupt. We will consider that in terms of network and processing, generating

a connection or handling an interrupt are the same.

9

• Downloading the page.

• Processing the downloaded page.

An estimation of these costs is due to Craswellet al. [CCHM04], and it is close to US $1.5 Million for

an entire crawl of the Web, or about US$ 0.002 per page. Remarkably, this is exactly our estimation of the

costs for the Web server, and both figures were obtained independently.

The freshness of the repository is higher in interrupt-based strategies,as there is no significant delay be-

tween the server update and the search engine syncing of the page. Thecosts for the crawler are summarized

in Table 6.2. Network cost for the crawler is the same as for the server, aseach transfer in these schemes

involves one crawler and one server.

However, interrupt-based strategies have to be implemented carefully, because if too many Web servers

are sending interrupts to the Web crawler at whatever time they choose, thenthe search engine risks being

overloaded by these requests, loosing control over the crawling process. It is likely that interrupt-based

strategies can only be deployed for a small group of Web sites.

Which is the best strategy for the crawler? A remote agent or filtering interface can help to distribute the

workload of the search engine, especially if servers cooperate in pre-processing documents or in generating

partial indexes. The remote agent can be used for the more important Web sites (such as news sources) if the

crawler can process interrupts as they arrive, probably by keeping asmall index for the most changing data.

An extreme case of using an agent could be when the Web server generates the (partial) inverted index

and then sends it to the search engine, which only needs to perform a merge. In this case, the crawling

problem is simplified, and is transformed into polling or pushing of indexes.

6.4.3 Overall cost

It is very important to consider that not all Web servers are equal, and the distribution of “quality” on the

Web is, by all measures, very skewed: most of the important Web pages are on a few Web servers, as shown

in Figure?? (page??). Those servers are not necessarily the larger ones, in Figure 6.4 wecompare average

Pagerank with site size and find no correlation.

By inspecting Table 6.2, a noticeable fact is that the schemes that do not require extra cost for the Web

server are already implemented in HTTP (keep-alive andif-modified-since features).

It is clear that if the request–response paradigm is enforced strictly, thescheme that can provide the best

benefits in terms of freshness is a filtering interface. Pushing or pulling differences of content are probably

the most balanced schemes, because the server gains in less bandwidth usage. These schemes are more

useful if many clients can benefit from differences: not only the Web crawlers of search engines, but also the

general public using enabled browsers or cache services.

10

 1e-07

 1e-06

 1 10 100 1000 10000

A
ve

ra
ge

 P
ag

er
an

k

Number of pages

Figure 6.4: Average Pagerank versus number of pages, for a sample of 25,000 Web sites in

the Chilean Web. The size of a Web site does not seems to be correlated with the quality of its

pages according to this metric.

6.5 Implementation of a cooperation scheme in the WIRE crawler

The WIRE crawler supports a cooperation scheme based on serving meta-data of updates. The Web server

provides an XML file containing a description of the documents provided by the Web server.

We wanted to use publicly-available XML name spaces to conform to existent definitions. We used the

following XML applications (languages):

RSS RDF Site Summary, also called “Rich Site Summary” or “Really Simple Syndication” is an extension

of RDF. It was conceived as a simplification of RDF to be able to aggregate multiple Web sites in a

single interface for the “My Netscape” service [Lib00]. Nowadays, it iswidely used by news sources

to provide a short list of the latest news histories to be used by news aggregators.

DC The Dublin Core is a simple set of metadata elements to describe electronic documents. It is designed

to provide a minimal set of descriptive elements for Web pages [dc04], including date, type, format,

copyright status, etc.

The Web server periodically generates a filerobots.rdf, located at the root of the Web site, containing

the last-modification time of all the URLs in its public space. An example file is shown inFigure 6.5.

Currently the file contains only the URL and the last-modification time, which is the information the

WIRE crawler can use, but in the future it could include more information such as page size, format, number

of accesses, etc.

11

<?xml version="1.0"?>

<rdf:rdf

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns"

xmlns:dc="http://purl.org/dc/elements/1.1/"

xmlns="http://purl.org/rss/1.0/">

<channel rdf:about="http://www.example.com/">

<items><rdf:Seq>

<rdf:li rdf:resource="http://www.example.com/one.html"/>

<rdf:li rdf:resource="http://www.example.com/two.html"/>

</rdf:Seq></items>

</channel>

<item rdf:about="http://www.example.com/one.html">

<dc:modified>2004-10-01T12:05+02:00</dc:modified>

</item>

<item rdf:about="http://www.example.com/one.html">

<dc:modified>2004-11-21T09:01+02:00</dc:modified>

</item>

</rdf:rdf>

Figure 6.5: Example of arobots.rdf file.

The implementation of this scheme has two parts: a server-side script that generates the file, and an

interpreter in the Web crawler.

6.5.1 Web Server implementation

On the server-side, a Perl script is provided for generating theRSS file. This script requires two parameters:

• The root directory of pages in the Web site.

• The base URL of the home page of the Web site.

Optional parameters are:

• Patterns to include pages. The default is to include all pages that include thesubstring “.htm”.

• Patterns to reject pages, to exclude private directories.

• The maximum number of pages to include in the file.

12

A typical example of usage is:

% wire-rss-generate --docroot /home/httpd/html --base http://www.example.com/

> /home/httpd/html/robots.rdf

This program is executed periodically usingcrontab. The frequency of updates should be related to

the frequency of update of the Web site, but generating the file on a daily basis seems acceptable.

The.rdf extension was chosen because it is usually a registered file type in the Apache Web servers,

and therefore the response included the correspondingapplication/xml+rdf content-type.

6.5.2 Web Crawler implementation

The WIRE crawler handles the download of this file similarly to therobots.txt file [Kos95]. A setting in

the crawler configuration file controls the frequency at which this file is checked for changes.

The crawler parses therobots.rdf file and for each item found, it checks the last modification time

of the file. This timestamp is entered into the equation for estimating the probability of the object being

outdated, as shown in Section?? (page??).

6.5.3 Testing

We tested our implementation to gather insights about how it works in practice. This is a first step that is

necessary to learn about the system before a large-scale studied is carried.

We tested our implementation over a month with a Web site containing medical information;this Web

site has 249 pages. Issuing aHEAD request for each page, just to check for the last-modification timestamp,

generates 108,777 bytes of traffic, with an average of 434 bytes per page. It takes about 5 minutes to

sequentially make all of these requests, even if we do not wait between them.

When using cooperation, the generatedrobots.rdf file is about 61,504 bytes, with an average is 247

bytes per page; this is more than 40% of savings in bandwidth, and with an important advantage: everything

is done in just one request in less than 5 seconds.

An unexpected benefit of this implementation is that Web pages are usually discovered slowly, level by

level as the crawler must parse the Web pages to find links. When the page listing is found on a single file,

the Web crawler can download the entire site in just one session, without having to parse data to discover

pages.

We learned that if the updates involve only just one page, then if therobots.rdf file is too large this

scheme can waste network resources because the complete file with the metadata is transfered each time. The

robots.rdf could be divided into several parts for very large Web sites, and these parts could be chosen in

13

such a way that the most important pages are found in a small part –for instance, by dividing the Web site by

levels.

We also learned that for a good scheduling using a file with meta-data, the important search engine pa-

rameter is not the minimum re-visiting period, but the maximum acceptable outdated probability; otherwise,

bandwidth can be wasted by requesting the meta-data file more often that it is necessary, especially if only a

few Web sites are involved and they do not change too often.

6.6 Conclusions

How probable is the wide adoption of a cooperation strategy? The basic HTTP protocol is not completely

implemented in the same way across different servers, and the minimum-common-denominator is quite poor

in terms of functionalities, as explained in Appendix??.

On the other hand, Web site administrators can cooperate if it is not too costly and means an important

benefit. This benefit should come mostly in terms of being better represented on the Web search engines. We

consider that the reductions on load for the Web server are probably not enough by themselves to justify the

adoption of a cooperation strategy.

There are also some specific applications that can use a cooperation strategy: most general search en-

gines offer specialized (paid) search services for specific Web sites.These search services could be improved

if software for cooperating with the search service is installed in the server-side.

With the emergence of Web services, filtering strategies could be an interesting possibility for the near

future, as they can help crawlers and other autonomous agents to interactwith Web servers at a more mean-

ingful level.

14

Bibliography

[AM99] J. Allen and M. Mealling. RFC 2651: The architecture of the Common Indexing Protocol.

http://www.ietf.org/rfc/rfc2651.txt, 1999.

[ava04] AvantGO. http://www.avantgo.com/, 2004.

[BCGMS00] Onn Brandman, Junghoo Cho, Hector Garcia-Molina, and Narayanan Shivakumar. Crawler-

friendly web servers. InProceedings of the Workshop on Performance and Architecture of

Web Servers (PAWS), Santa Clara, California, USA, June 2000.

[BK97] S. Brandt and A. Kristensen. Web push as an Internet Notification Service. InW3C workshop

on push technology, Boston, MA, USA, 1997.

[BMN03] Sourav Bhowmick, Sanjay Kumar Madria, and Wee Keong Ng. Detecting and representing

relevant web deltas in WHOWEDA.IEEE Transactions on Knowledge and Data Engineering,

(2):423–441, 2003.

[Buz03] Marina Buzzi. Cooperative crawling. InProceedings of Latin American Conference on World

Wide Web (LA-WEB), pages 209–211. IEEE Cs. Press, 2003.

[Cas03] Carlos Castillo. Cooperation schemes between a web server anda web search engine. In

Proceedings of Latin American Conference on World Wide Web (LA-WEB), pages 212–213,

Santiago, Chile, 2003. IEEE Cs. Press.

[CCHM04] Nick Craswell, Francis Crimmins, David Hawking, and Alistair Moffat. Performance and cost

tradeoffs in web search. InProceedings of the 15th Australasian Database Conference, pages

161–169, Dunedin, New Zealand, January 2004.

[CCMW01] Erik Christensen, Francisco Curbera, Greg Meredith, andSanjiva Weerawarana. WSDL: Web

services description language. http://www.w3.org/TR/wsdl, 2001.

[Cha02] Ben Charny. CNET news: Wireless Web embraces “push”. http://news.com/2100-1033-

958522.html, 2002.

15

[dc04] Dublin Core Metadata Initiative. http://dublincore.org/, 2004.

[FGM+99] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,and Tim Berners-Lee.

RFC 2616 - HTTP/1.1, the hypertext transfer protocol. http://w3.org/Protocols/rfc2616/-

rfc2616.html, 1999.

[GC01] Vijay Gupta and Roy H. Campbell. Internet search engine freshness by web server help. In

Proceedings of the Symposium on Internet Applications (SAINT), pages 113–119, San Diego,

California, USA, 2001.

[Kam03] Poul-Henning Kamp. OpenBSD CTM. http://www.openbsd.org/ctm.html, 2003.

[KNL98] Tuula Kapyla, Isto Niemi, and Aarno Lehtola. Towards an accessible web by applying push

technology. InFourth ERCIM Workshop on “User Interfaces for All”, Stockholm, Sweden,

1998.

[Kos95] Martijn Koster. Robots in the web: threat or treat ?ConneXions, 9(4), April 1995.

[LG99] Steve Lawrence and C. Lee Giles. Accessibility of information on theweb. Nature,

400(6740):107–109, 1999.

[Lib00] Dan Libby. History of RSS. http://groups.yahoo.com/group/syndication/message/586, 2000.

[LO99] Danny B. Lange and Mitsuru Oshima. Seven good reasons for mobile agents.Communications

of the ACM, 42(3):88–89, 1999.

[LS99] Ora Lassila and Ralph Swick. World Wide Web Consortium - RDF.

http://www.w3.org/TR/REC-rdf-syntax, 1999.

[MAR+00] D. Menasce, V. Almeida, R. Riedi, F. Pelegrinelli, R. Fonseca, and W.Meira Jr. In search

of invariants for e-business workloads. InProceedings of the second ACM Conference on

Electronic Commerce, Minneapolis, October 2000.

[MDFK97] Jeffrey C. Mogul, Fred Douglis, Anja Feldmann, and Balachander Krishnamurthy. Potential

benefits of delta encoding and data compression for HTTP. InProceedings of ACM confer-

ence of Applications, Technologies, Architectures and Protocols for Computer Communication

(SIGCOMM), pages 181–194, Cannes, France, 1997.

[NCO04] Alexandros Ntoulas, Junghoo Cho, and Christopher Olston. What’s new on the web?: the

evolution of the web from a search engine perspective. InProceedings of the 13th conference

on World Wide Web, pages 1 – 12, New York, NY, USA, May 2004. ACM Press.

16

[RGM01] Sriram Raghavan and Hector Garcia-Molina. Crawling the hidden web. InProceedings of the

Twenty-seventh International Conference on Very Large Databases (VLDB), pages 129–138,

Rome, Italy, 2001. Morgan Kaufmann.

[RRDB02] J.F. Reschke, S. Reddy, J. Davis, and A. Babich. DASL - DAV searching and locating protocol.

http://www.webdav.org/dasl/, 2002.

[SS04] Danny Sullivan and Chris Sherman. Search Engine Watch reports. http://www.searchengine-

watch.com/reports/, 2004.

[TP03] Andrew Tridgell and Martin Pool. RSYNC: fast incremental file transfer.

http://samba.anu.edu.au/rsync/, 2003.

[TR99] W. Theilmann and K. Rothermel. Maintaining specialized search engines through mobile filter

agents. In M. Klusch, O. Shehory, and G. Weiß, editors,Proc. 3rd International Workshop on

Cooperative Information Agents (CIA’99), pages 197–208, Uppsala, Sweden, 1999. Springer-

Verlag: Heidelberg, Germany.

[vHGH+97] Arthur van Hoff, John Giannandrea, Mark Hapner, Steve Carter, and Milo Medin. DRP -

distribution and replication protocol. http://www.w3.org/TR/NOTE-drp, 1997.

[web04] WebDAV resources. http://www.webdav.org/, 2004.

[WEDM00] Larry Wall, Paul Eggert, Wayne Davison, and David MacKenzie. GNU patch.

http://www.gnu.org/software/patch/patch.html, 2000.

17

