Chapter 7

Our Crawler Implementation

We developed a Web crawler that implements the crawling model and architpoésented in Chaptéy?,
and supports the scheduling algorithms presented in Chapteérhis chapter presents the implementation
of the Web crawler in some detail. Source code and technical documentatituding a user manual are

available aht t p: // ww. cwr . cl / proj ect s/ WRE/ .

The rest of this chapter is organized as follows: section 7.1 presento@mming environment used.
Section 7.2 details the main programs, section 7.3 the main data structurestant adahe configuration

variables.

7.1 Programming environment and dependencies

The programming language used was C for most of the application. We @&dd4s to take advantage of
the C++ Standard Template Library to shorten development time; howevelidwet use the STL for the

critical parts of our application (e.g.: we developed a specialized implementdtaohash table for storing

URLSs). The crawler currently has approximatelly, @80 lines of code.

For building the crawler, we used the following software packages:

ADNS [Jac02] Asynchronous Domain Name System resolver, replaces tliasdddDNS resolver interface
with non-blocking calls, so multiple host names can be searched simultane@eslysed ADNS in
the “harvester” program.

LibXML2 [lib02] An XML parser developed in C for the Gnome project. Itis verytpble, and it is also an
efficient and very complete specification of the XPath language. We uBathXor the configuration
file of the crawler, and for parsing the “robots.rdf” file used for Webveecooperation during the
crawl, as shown in Chaptér?.

We made extensive use of thpr of utility to improve the speed of the application.

7.2 Programs

In this section, we will present the four main programs: manager, harvgateerer and seeder. The four
programs are run in cycles during the crawler’s execution, as showigume™?.

7.2.1 Manager: long-term scheduling

The “manager” program generates the liskof/RLs to be downloaded in this cycle (we uged= 100 000
pages by default). The procedure for generating this list is outlined below

quality : 0.4
freshness : 0.1 Viownloaded * 04 — Vigpene : 0.04 = {Profit: 0.36

visited? 01
quality 0.7
freshness ' 0.9 Vaownloaded - 07 — Vewrent - 063 = Profit: 0.07
visited? |
quality 1 0.6

P3 freshness . Vdownloaded 0.6 — Vourent : 0 = kL Profit: 0.6
visited? 0

Figure 7.1: Operation of the manager program wkh= 2. The two pages with the highest
expected profit are assigned to this batch.

The current value of a page is IntrinsicQualiy x Pr (Freshnedg) = 1) x RepresentationalQualitp),
where RepresentationalQualify) equals 1 if the page has been visited, 0 if not. The value of the downloaded
page is IntrinsicQualityp) x 1 x 1. In Figure 7.1, the manager should select pajemdP; for this cycle.

1. Filter out pages that were downloaded too recentlyin the configuration file, a criteria for the maxi-
mum frequency of re-visits to pages can be stated (e.g.. no more than olageoa once a week).
This criteria is used to avoid accessing only a few elements of the collectidnisdrased on the
observations by Cho and Garcia-Molina [CGMO3].

2. Estimate the intrinsic value of Web pagesThe manager program calculates the value of all the Web
pages in the collection according to a ranking function. The ranking fumeispecified in the con-

2

figuration file, and it is a combination of one or several of the following:ePagk [PBMW98], static
hubs and authority scores [Kle99], weighted link rank [Dav03, BYD@4ge depth, and a flag indi-
cating if a page is static or dynamic. It can also rank pages according penties of the Web sites
that contain the pages, such as “Siterank” (which is like Pagerank aluilated over the graph of
links between Web sites) or the number of pages that still have not beenadmed from that specific
Web site, this is, the stragey presented in Chapeer

3. Estimate the freshness of Web page$he manager programs estimaResFreshness, = 1) for all pages
that have been visited, using the information collected from past visits arfdrthelas presented in
Section?? (page??).

4. Estimate the profit of retrieving a Web page The program considers that the representational quality of
a Web page is either 0 (page not downloaded) or 1 (page downlodidest).it uses the formula given
in Section?? (page??) with a = 3 =y =1 to obtain the profit, in terms of the value of the index,
obtained by downloading the given page. This is high, e.g.: if the intrinsiewaflthe page is high,
and the page copy is not expected to be fresh, so important pageswatectmore often.

5. Extract top K pages according to expected profitOr less tharK pages if there are fewer URLs avail-
able. Pages are selected according to how much their value in the index wilhgecif they are
downloaded now.

An hypothetical scenario for the manager program Witk 2 is depicted in Figure 7.1. The manager
objective is to maximize the profit in each cycle.

For parallelization, the batch of pages generated by the manager is starsérias of files that include
all the URLs and metadata of the required Web pages and Web sites. It isedl clodependent unit of
data that can be copied to a different machine for distributed crawlingjradutes all the information the
harvester needs. Several batches of pages can be generatedlizisame cycle by taking more URLS from
the top of the list.

7.2.2 Harvester: short-term scheduling

The “harvester” programs receives a listofJRLs and attempts to download them from the Web.

The politeness policy chosen is to never open more than one simultanemexton to a Website,
and to wait a configurable amount of seconds between accesseadt(iBja For the larger Websites, over a
certain quantity of pages (default 100), the waiting time is reduced (to altlef& seconds). This is because
by the end of a large crawl only a few Web sites remain active, and the wéitieggenerates inefficiencies
in the process that are studied in Chater

As shown in Figure 7.2, the harvester maintains a queue for each Web s#@agiven time, pages are
being transferred from some Web sites, while other Web sites are idle t@enfar politeness policy. This
is implemented using a priority queue in which Web sites are inserted accordirgrtestamp for their next
visit.

World Wide Web

Web sites Eg-l

P11

)

Web pages

Figure 7.2: Operation of the harvester program. This program createsaajfor each Web
site and opens one connection to each active Web site (sitesad 6). Some Web sites are
“idle”, because they have transfered pages too recentBs(&i 5, and 7) or because they have
exhausted all of their pages for this batch (3).

Our first implementation used Linux threads [Fal97] and did blocking I/O a@h ¢aread. It worked
well, but was not able to go over 500 threads even in PCs with proceskdHz and 1GB of RAM. It
seems that entire thread system was designed for only a few threadsatte¢ime, not for higher degrees
of parallelization.

Our current implementation uses a single thread with non-blocking I/O ovarrag of sockets. The
pol | () system call is used to check for activity in the sockets. This is much harder terivapt than the
multi-threaded version, as in practical terms it involves programming coniasthes explicitly, but the
performance was much better, allowing us to download from over 1000sit&bhat the same time with a
very lightweight process.

The output of the harvester is a series of files containing the downloadgs pad metadata found
(e.g.: server response codes, document lengths, connection ,sgteedd he response headers are parsed to
obtain metadata, but the pages themselves are not parsed at this step.

7.2.3 Gatherer: parsing of pages

The “gatherer” program receives the raw Web pages downloaddigebyarvester and parses them. In the
current implementation, onlyext / pl ai n andt ext/ ht M pages are accepted by the harvester, so these are
the only MIME types the gatherer has to deal with.

The parsing of HTML pages is done using an events-oriented parseevénts-oriented parser (such
as SAX [Meg04] for XML) does not build an structured representatibthe documents: it just generates
function calls whenever certain conditions are met, as shown in Figure 7e3fodd that a substantial
amount of pages were not well-formed (e.g.: tags were not balaneetie parser must be very tolerant to
malformed markup.

[<lel>[zibffs] [<]s] [a] |<lol>[cle]s]e]</[pp]<]/p]]

1. start(*p”)

2. text(“This isa ™)

3. start(“b”)

A\
4, text(“test™)

"

5. end(*b™)

Y

6. end(“p”)

Figure 7.3: Events-oriented parsing of HTML data, showing the functitivat are called while
scanning the document.

During the parsing, URLs are detected and added to a list that is passed$edider” program. At this
point, exact duplicates are detected based on the page contents, arficblimpsges found to be duplicates
are ignored to preserve bandwidth, as the prevalence of duplicates Bvethis very high [BBDHOO].

The parser does not remove all HTML tags. It cleans superfluouatakeaves only document struc-
ture, logical formatting, and physical formatting such as bold or italics. rin&ion about colors, back-
grounds, font families, cell widths and most of the visual formatting markusadded. The resulting file
sizes are typically 30% of the original size and retain most of the informatiedetefor indexing. The list
of HTML tags are kept or removed is configurable by the user.

7.2.4 Seeder: URL resolver

The “seeder” program receives a list of URLs found by the gathaneradds some of them to the collection,
according to a criteria given in the configuration file. This criteria includgseps for accepting, rejecting,

and transforming URLSs.

Accept Patterns for accepting URLSs include domain name and file name patterns.oiffaéndname pat-
terns are given as suffixes (e.gcl, . uchile.cl, etc.) and the file name patterns are given as file
extensions. In the later case, accepted URLs can be enqueued fdoddwor they can be just logged
on a file, which is the current case for images and multimedia files.

Reject Patterns for rejecting URLs include substrings that appear on the pararoétanown Web appli-
cations (e.gl ogi n, | ogout , regi st er, etc.) that lead to URLs which are not relevant for a search
engine. In practice, this manually-generated list of patterns produceificagt savings in terms of
requests for pages with no useful information.

Transform To avoid duplicates from session ids, which are discussed in Se2tigoage??), we detect
known session-id variables and remove them from the URLSs. Lod file sisabols can detect requests
coming from a Web crawler using the “user-agent” request headeistpedvided, so this should not
harm Web server statistics.

The seeder also processes all the “robots.txt” and “robots.rdf” filesatkedound, to extract URLs and
patterns:

robots.txt This file contains directories that should not be downloaded from the WelK®s96]. These
directories are added to the patterns for rejecting URLs in a per-site basis.

robots.rdf This file contains paths to documents in the Web site, including their last-modifi¢aties. It
is used for server cooperation, as explained on Ch&ter

The seeder also recognizes filename extensions for known programmaguages used for the Web
(e.g.. php,.pl,.cfmetc.) and mark those URLs as “dynamic pages”. Dynamic pages may behigrer
or lower scores during long term scheduling.

To initialize the system, before the first batch of pages is generated by tragarathe seeder program
is executed with a file providing the starting URLSs for the crawl.

7.3 Data structures

7.3.1 Metadata

All the metadata about Web pages and Web sites is stored in files containihgitbesl records. The records
contain all the information about a Web page or Web site except for the WRlthe contents of the Web

page.

There are two files: one for metadata about Web sites, sorted by sitedisyn@nfor metadata about
Web pages, sorted by document-id. Metadata currently stored for a &gebipcludes information about:

Web page identification Document-id, which is an unique identifier for a Web page, and Site-id, wiich
an unique identifier for Web sites.

HTTP response headersHTTP response code and returned MIME-type.
Network status Connection speed and latency of the page download.

FreshnessNumber of visits, time of first and last visit, total number of visits in which a cleamgs detected
and total time with no changes. These are the parameters needed to estimeshthess of a page.

Metadata about page contentsContent-length of the original page and of the parsed page, hash functio
of the contents and original doc-id if the page is found to be a duplicate.

Page scoresPagerank, authority score, hub score, etc. depending on the $finlgguhlicy from the config-
uration file.

Metadata currently stored for a Web site includes:

Web site identification Site-id.
DNS information IP-address and last-time it was resolved.
Web site statistics Number of documents enqueued/transfered, dynamic/static, erron&qeéO

Site scoresSiterank, sum of Pagerank of its pages, etc. depending on the canitguiile.

In both the file with metadata about documents, and the file with metadata abougitd&hthe first
record is special, as it contains the number of stored records. Thevelecnment with doc-igt 0 nor Web
site with site-id= 0, so identifier O is reserved for error conditions and record for ch&cui is stored at
offset sizeofdocid) x i.

7.3.2 Page contents

The contents of Web pages are stored in variable-sized records thidedecument-id. Inserts and deletions
are handled using a free-space list with first-fit allocation.

This data structure also implements duplicate detection: whenever a new dadaramred, a hash
function of its contents is calculated. If there is another document with the Bashefunction and length,
the contents of the documents are compared. If they are equal, the ddaddroéthe original document is
returned, and the new document is marked as a duplicate.

DOC,: 9421

@O » w5

¥
VUUVVUVUVUUU
/ \

0ld=NULL, new=9421

9420 offset

—@—> 9421 offset

9422 offset
9423 offset

—@D»

Disk Storage

1
2
3
4
Free space list Offsets list

Figure 7.4: Storing the contents of a document requires to check firgtafdocument is a
duplicate, then searching for a place in the free-spacedist then writing the document to
disk.

The process for storing a document, given its contents and documenti&hicted in Figure 7.4:

1. The contents of the documents are checked against the contentastetable. If they have been
already seen, the document is marked as a duplicate and the originalidaetigrned.

2. A free space is searched in the free-space list. This returns a dotcaoffset in the disk pointing to
an available position with enough free space.

3. This offset is written to the index, and will be the offset for the curtdmtument.

4. The document contents are written to the disk at the given offset.

This module requires support to create large files, as for large colledtierdisk storage grows over
2GB, and the offset cannot be provided in a variable of tygm§”. In Linux, the LFS standard [Jae04]
provides offsets of typel‘ong | ong” that are used for disk I/O operations. The usage of continuous, large
files for millions of pages, instead of small files, can save a lot of disk sesksoted also by Patterson
[Pat04].

7.3.3 URLs

The structure that holds the URLSs is highly optimized for the most common opesatioing the crawling
process:

e Given the name of a Web site, obtain its site-id.
e Given the site-id of a Web site and a local link, obtain the doc-id for the link.
e Given a full URL, obtain both its site-id and doc-id.
The implementation uses two hash tables: the first for converting Web site matimsge-ids, and the

second for converting “site-id + path name” to a doc-id. The processdiarerting a full URL is shown in
Figure 7.5.

INPUT

http://host.domain.com/dir/file.html

h (‘host.domain.com') 4%

h('235 dit/file.html')
host.domain.com 235 —— VULVUULUU
@ 235 path/file.htnl 9421

OUTPUT
FSITE—ID = 235; DOC-ID = 9421

Figure 7.5: For checking a URL: (1) the host name is searched in the hadh od Web site
names. The resulting site-id (2) is concatenated with ttiequad filename (3) to obtain a doc-id

(4).

This process is optimized to exploit the locality on Web links, as most of the linksdftn a page point
to other pages co-located in the same Web site.

7.3.4 Link structure

The link structure is stored on disk as an adjacency list of document-idsadfacency list is implemented
on top of the same data structure used for storing the page contentst fxdbe duplicate checking. As
only the forward adjacency list is stored, the algorithm for calculating RRaggecannot access efficiently the
list of back-links of a page, so it must be programmed to use only forwakd.lifhis is not difficult to do,
and Algorithm 1 illustrates how to calculate Pagerank without back-links;aimesdea is also used for hubs
and authorities.

Our link structure does not use compression. The Web graph can beesseg by exploiting the
locality of the links, the distribution of the degree of pages, and the facsévatral pages share a substantial

9

Algorithm 1 Calculating Pagerank without back-links

Require: G Web Graph.

Require: gdampening factor, usually~ 0.15
1: N« |G|
2: for eachpe Gdo

3: Pagerank= g
4. Auxp=0
5. end for
6: while Pagerank not convergirdp
7. for eachpe Gdo
8: I (p) « pages pointed by
o: for eachp’ e I'*(p) do
10: Auxy = Auxpy + PI?%LW
11: end for
12: end for
13: for eachpe Gdo
14: Pagerank = g + (1—g)Auxp
15: Auxp =0
16: end for
17: Normalize Pageranky Pagerank=1
18: end while

10

portion of their links [SYO1]. Using compression, a Web graph can beesemted with as few as 3-4 bits
per link [?].

7.4 Configuration

Configuration of the crawling parameters is done with a XML file. Internallgretis a mapping between
XPath expressions (which represent parts of the XML file) and intearébles with native data types such
as integer, float or string. When the crawler is executed, these intemiables are filled with the data given
in the configuration file.

Table 7.1 shows the main configuration variables with their default valugsa &etail of all the con-
figuration variables, see the WIRE documentationtap: / / waww. cwr . ¢l / proj ect s/ W RE/ doc/ .

7.5 Conclusions

This chapter described the implementation of the WIRE crawler, which is baseke crawling model
developed for this thesis. The Web as an information repository is vetgobang, especially because of its
dynamic and open nature; thus, a good Web crawler needs to deal withaspews of the Web that become
visible only while running an extensive crawl, and there are severaladmases, as shown in Appendif.

There are a few public domain crawling programs listed under Se@fqipage??). We expect to
benchmark our crawler against some of them in the future, but there is stititer do to get the most out of
this architecture. The most important task is to design a component forieating) several instances of the
Web crawler running in different machines, or to be able to carry two péttse process at the same time,
such as running the harvester while the gatherer is working on a prevaacis. This is necessary because
otherwise the bandwidth is not used while parsing the Web pages.

Our first implementation of the Web crawler used a relational database aatishfor downloading
the Web pages, and the performance was very low. Our current impleimantaith the data structures
presented in this chapter, is powerful enough for downloading collectiothe order of tens of millions of
pages in a few days, which is reasonable for the purposes of creatiagets for simulation and analysis,
and for testing different strategies. There is plenty of room for erdraeats, especially in the routines
for manipulating the Web graph —which is currently not compressed, louicgbe compressed for larger
datasets— and for calculating link-based scores.

Also, for scaling to billions of Web pages, some data structures shoulddtieethon disk instead of in
memory. This development is outside the scope of this thesis, but seemsal ocaiinuation of this work.

The next two chapters present a study of a Web collection and the ptgwtitdems found while
performing this large crawl.

11

XPath expression Default value Description

collection/base tmp/ Base directory for the crawler
collection/maxdoc 10 Mill. Maximum number of Web pages.
collection/maxsite 100,000 Maximum number of Web sites.
seeder/max-urls-per-site 25,000 Max. pages to download from edglsitde
seeder/accept/domain-suffixes .cl Domain suffixes to accept.
seeder/ext/download/static * Extensions to consider as static.
seeder/ext/download/dynamic * Extensions to consider as dynamic.
seeder/ext/log/group * Extensions of non-html files.
seeder/sessionids * Suffixes of known session-id parameters.
manager/maxdepth/dynamic 5 Maximum level to download dynamic pages.
manager/maxdepth/static 15 Maximum level to download static pages.
manager/batch/size 100,000 URLSs per batch.

manager/batch/samesite 500 Max. number of URLs from the same site.
manager/score * Weights for the different score functions.
manager/minperiod * Minimum re-visiting period.
harvester/resolvconf 127.0.0.1 Address of the name server(s).
harvester/blocked-ip 127.0.0.1 IPs that should not be visited.
harvester/nthreads/start 300 Number of simultaneous threads or sockets
harvester/nthreads/min 10 Minimum number of active sockets.
harvester/timeout/connection 30 Timeout in seconds.
harvester/wait/normal 15 Number of seconds to wait (politeness).
harvester/maxfilesize 400,000 Maximum number of bytes to download.
gatherer/maxstoredsize 300,000 Maximum number of bytes to store.
gatherer/discard * HTML tags to discard.

gatherer/keep * HTML tags to keep.

gatherer/link * HTML tags that contain links.

Table 7.1: Main configuration variables of the Web crawler. Defaultues marked “*” can be
seen ahttp:// ww. cwr . cl/projects/ WRE doc/

12

Bibliography

[BBDHOO] Krishna Bharat, Andrei Z. Broder, Jeffrey Dean, andrika Rauch Henzinger. A compari-
son of techniques to find mirrored hosts on the WW\éurnal of the American Society of
Information Science, 51(12):1114-1122, 2000.

[BYDO4] Ricardo Baeza-Yates and Emilio Davis. Web page ranking usikgditributes. InAlternate
track papers & posters of the 13th international conference on World Wide Web, pages 328-329.
ACM Press, 2004.

[CGMO03] Junghoo Cho and Hector Garcia-Molina. Effective pagestfpolicies for web crawler&CM
Transactions on Database Systems, 28(4), December 2003.

[Dav03] Emilio Davis. Mbdulo de lisqueda en texto completo para la web con un nuevo ranking
esttico, October 2003. Honors Thesis.

[Fal9o7] Sean Falton. Linux threads frequently asked questions. http:/Adpverg/FAQ/Threads-
FAQ/, January 1997.

[Jac02] lan Jackson. ADNS. http://www.chiark.greenend.orerigid/adns/, 2002.
[Jae04] Andreas Jaeger. Large file support in linux. http://www.sukeajfénux_Ifs.html, June 2004.

[Kle99] Jon M. Kleinberg. Authoritative sources in a hyperlinked enwinent. Journal of the ACM,
46(5):604—632, 1999.

[Kos96] Martijn Koster. A standard for robot exclusion. http://www.rolxiterg/wc/exclusion.html,
1996.

[lib02] Libxml - the xml ¢ library for gnome. http://www.xmlsoft.org/, 2002.
[Meg04] David Megginson. Simple API for XML (SAX 2.0). http://sax.sougle.net/, 2004.

[Pat04] Anna Patterson. Why writing your own search engine is hA@M Queue, pages 49 — 53,
April 2004.

13

[PBMW98] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terigogfad. The pagerank citation
algorithm: bringing order to the web. Proceedings of the seventh conference on World Wide
Web, Brisbane, Australia, April 1998.

[SYO01] Torsten Suel and Jun Yuan. Compressing the graph strudttire Web. InProceedings of the
Data Compression Conference DCC, pages 213 — 222. IEEE Computer Society, 2001.

14

