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Simultaneously recorded neurons exhibit correlations whose underlying causes are not known. Here,

we use a population of threshold neurons receiving correlated inputs to model neural population
recordings. We show analytically that small changes in second-order correlations can lead to large
changes in higher-order redundancies, and that the resulting interactions have a strong impact on the
entropy, sparsity, and statistical heat capacity of the population. Our findings for this simple model may
explain some surprising effects recently observed in neural population recordings.
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Modeling the statistical structure of firing patterns dis-
tributed across multiple neurons is a major challenge in
neuroscience. Recently, the Ising model [1] has become
popular for studying neural population recordings [2—4].
Its use for neural data analysis is motivated by the fact
that it is the maximum entropy (MaxEnt) model for given
second-order correlations [5,6]. Therefore, deviations from
the model indicate that higher-order correlations have to be
taken into account for modeling the population statistics.
(See [7] for alternative approaches.)

Recent studies have reported that higher-order redun-
dancies (i.e., reductions in entropy due to the presence of
higher-order interactions) are weak in small retinal popu-
lations [2,3], but that they are substantial in local cortical
populations [4]. It has also been shown that they are
dynamically modulated by the stimulus [4], and that they
affect the coding properties [8] and the sparsity of the
population [4]. However, there has arguably been a lack
of theoretical models that could explain this diversity of
findings. In particular, as most experimental studies have
been limited to small populations, current models do not
answer fundamental questions about the behavior of the
entropy [2,9] and the statistical heat capacity [10] of large
populations.

Here, we provide a parsimonious, mathematically trac-
table model which can account for this multitude of em-
pirical observations. In our model, correlations between
neurons arise from Gaussian inputs into threshold neurons.
The model is therefore equivalent to the Dichotomized
Gaussian distribution (DG) [11,12], which has previously
also been investigated by Amari et al. [13] to study corre-
lations in neural populations. Although the inputs to the
model are Gaussian distributed and therefore have no
interactions beyond second order, the nonlinear spiking
thresholds give rise to statistical interactions of all orders.
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Importantly, the magnitude of the resulting redundancies is
strongly dependent on second-order correlations, and in a
manner which is quantitatively consistent with neural re-
cordings [4,14]. Using this model, we investigate the scal-
ing of the entropy and redundancies in large neural
populations, and show their impact on the sparsity of the
population. Finally, we find that our model, because of its
higher-order interactions, has a diverging heat capacity and
a critical point at unit temperature, as has been found empi-
rically in retinal populations [10] and natural images [15].

The Dichotomized Gaussian is a model of correlated
input.—We model a population of n binary neurons X;,
where a neuron is said to spike (X; = 1) if its input is
positive, and to be silent (X; = 0) otherwise. The inputs are
modeled by a correlated Gaussian with mean y and co-
variance A, which are chosen such that the outputs X have
mean u and covariance 3, (see [12] for details). Figure 1(a)
shows that this model has a characteristic relationship
between correlations and firing probabilities which is
similar to that found in neural recordings [16]. For analyti-
cal tractability, we here focus on homogeneous popu-
lations, i. e, u;=pup and %, =0, A; = AV(i # )
[1,8,13], and define the pairwise correlation coefficient
p=o/[u(l — w)]. By symmetry, all activity patterns
with the same number of spikes are equally likely, and
thus the model is fully specified by the distribution over
spike counts K = Y X;.

Higher-order redundancies depend on pairwise corre-
lations.—We want to determine the effect of common input
on the entropy of the population. MaxEnt models of differ-
ent orders define a hierarchy of models which are decreas-
ing in entropy. We define Spg to be the entropy of the full
DG model, S, of the corresponding MaxEnt model with
interactions of order ¢ (which matches correlations up to
order g of the full model) as well as A, = §, — S, and
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FIG. 1 (color online). Correlations in the DG. (a) The corre-
lation coefficient p increases with firing probability u for
constant input correlation A. (b) The KL divergence A, between
the DG and its second-order approximation is modulated by the
mean firing rate u and the correlation p in a population of size
n =15. (c) In small populations (n = 5), the multi-information
explained (/,) by a DG is close to 1. (d) The strain of the
homogeneous DG is negative and correlation dependent.
(e) For large populations, /, between the models is close to 0
for small correlations, i.e., the models are very dissimilar. (f)
Scaling of the entropy rate (i.e., entropy per neuron) of the Ising
and DG model for mean x = 0.1, and comparison with asymp-
totic values (labeled c0). The entropy rate drops initially before
settling to the asymptotic value. For weak correlations, differ-
ences between models only become apparent for large n.

A, = S, — Spg to be the reduction in entropy attributed to
second- and higher-order correlations. We refer to A, as
the higher-order redundancy. It is equivalent to the
Kullback-Leibler (KL) divergence, i.e., the expected log-
likelihood ratio per sample between a model and its
second-order approximation [17], a popular measure of
the magnitude of higher-order redundancies in neural re-
cordings [2,4]. A large A, implies that a pairwise Ising
model is insufficient for capturing the population statistics.

Figure 1(b) shows A, for a population model of size
n = 5 neurons. Notably, small changes in firing probabil-
ities and pairwise correlations can result in large changes in
A,,. For example, a change of correlation coefficient from
0.05 to 0.1 for w = 0.1 leads to an increase of A, by a
factor of 10.3 [from 6.6 to 68 X 1077, corresponding to

0.40 and 4.08 bits per minute at 10 ms bins, which is well
inside the range reported by [4] Fig. 2d]. This constitutes a
possible quantitative explanation for the phenomenon that
higher-order redundancies are much more pronounced
amongst nearby cortical neurons [4], for which pairwise
correlations are also higher [14]. In addition, our results are
also consistent with the finding that the mutual information
explained I, = A,/(A, + A,) is large in retinal recordings
with weak correlations driven by visual stimuli. For ex-
ample, for u = 0.02, p = 0.04, n = 10, we get [, = 0.92
[c.f. the values of 0.9 and above in [2] Fig. 2d, moments
were fit to their Fig. le]. Thus, the DG model makes
quantitative predictions for how deviations from pairwise
models depend on pairwise correlations.

We also find that the triplet interaction (*‘strain’’) [14] of
the DG model, is negative [ — 0.026 for w = p = 0.1, c.f.
[14], Fig. 2d], and decreases monotonically with increasing
correlation coefficients [14]. This is quantitatively consis-
tent with experimental observations and surprising, as it
has been suggested that common input would lead to a
higher occurrence of spike triplets, and thus to a positive
strain [ 14]. Simulations with heterogeneous correlations in
the DG show that its strain is negative for weak correlations
of the same sign. Thus, these properties of our common
input model are consistent with those observed in small
neural populations.

For large populations, A, and A, scale linearly with
population size with the correlation-dependent rate.—We
are interested in how the entropies of the two models grow
with population size. The observation of sublinear entropy
growth in small neural populations [2] has raised the
question of how entropy scales in large populations.
While entropy is extensive for many physical systems
[9], it is possible to construct systems with bounded pair-
wise correlations but nonextensive entropy [18].

For the DG, the asymptotic probability density of the
normalized counts r = k/n, r € (0, 1) is given by [19]

)

1—2%)
A3 —2n)

1

Foa(r) = —— exp—

Zoo > D

where ®(r) denotes the Gaussian cumulative density.
We can calculate the asymptotic entropy rate of the DG,
spg = lim,_,,Spg/n by decomposing it into the entropy
of the spike count and the entropy conditional on the spike
count, S(X) = S(X|K) + S(K). We note that S(K) is
bounded above by log,n, and that S(X|K = k) =
log,(}). Using the identity log,().)/n = —[rlog,(r)+
(1 = r)logy(1 — r)] = :m,(r), we can see that entropy in
this model with all-to-all correlations grows linearly
with population size with rate spg = [} fpg(r)n,(r)dr.
By solving a constrained linear optimization problem,
we find the distribution f;;(r) which maximizes the
entropy for large n, and find it to be a sum of two delta
peaks, fii(r) = p6(r —r;) + p6(r — r,) with loca-
tions 1, = 1/2 £ 4/1/4 — u + u? + o [18]. Hence, the
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asymptotic entropy per neuron of the Ising model is
Sisi = M2(r1)-

Thus, while the entropies of both models grow subli-
nearly initially [2] [see Fig. 1(f)], they scale linearly with
population size for large n [9]. As a consequence, A, also
scales linearly with population size. The entropy rate of the
DG for o = 0.1 and p = 0.05 is 0.35, and the rate of
A, = 0.016. For large populations [depending on the cor-
relations, for n between 10 and 100, Fig. 1(f)], the two
models become strongly dissimilar; i.e., [, of the DG is
asymptotically 0.57 for w=p=0.1 and 024 for
pn = 0.02, p = 0.04. Figure 1(e) also shows that the close
similarity (as measured by /,) between the Ising model and
the DG conjectured by [12] asymptotically holds for firing
probabilities near 0.5, but not necessarily otherwise. Our
results readily generalize to populations consisting of a
finite number of homogeneous pools, in which case the
asymptotic entropy is dominated by within-pool correla-
tions. Furthermore, our results could be used to derive
lower bounds on the entropy of general MaxEnt models.

The correlations of the DG increase sparsity.—In addi-
tion to the entropy, correlations also affect other population
statistics. In particular, we are interested in their effect on
the sparsity of the population. Sparsity is considered to be
an important feature of population coding, and has been
shown to be increased by correlations [4]. We quantify
sparsity as the probability of the population being quiet [4],
i.e. P(K = 0), and concentrate on the effects of correla-
tions on sparsity in large populations.

The mode of the asymptotic spike-count distribution
fpc(r) [Eq. (1)] is at 0, i.e., quiescence is the most likely
population state whenever the input correlation A exceeds
the value A = 0.5 [Fig. 2(a)], which is a critical point for
fpg(r). Interestingly, this is independent of the parameter
v controlling the mean firing rate (as long as y < 0). For
small spike probabilities w, even small correlations p
correspond to a supercritical A [Fig. 1(a)].

For the corresponding MaxEnt distribution, the binary

infinite-range Ising model with P(K = k) = Z_l(@ X

exp(h,k + J,k*), we need to identify the parameter scal-
ing yielding the desired means and correlations. It should
be noted that this limit is subtly, but critically different
from the usual thermodynamic one [1,10,13]: Setting
J, =J/n and h, = h as assumed in [13] is inconsistent
with the moment constraints, as it yields the large-n dis-
tribution exp{n[n,(r) + hr + Jr?]}, which collapses to a
single delta-peak and has vanishing correlations. However,
ensuring (b +J) = a/n with « = (logp, —logp,)/
(r, — r;) yields constant correlations and the large-n
distribution

fisi(n) = Zifexplar + nln (r) + J(* =N} (2)

with J = [log(ry) — log(r)]/(ry = ry) [18].

From Fig. 2, we can see that the two models have very
different spike counts, and that the DG has increasing
sparsity for supercritical correlation p = 0.25. The count
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FIG. 2 (color online). Population spike-count distributions and
sparsity: (a),(b) The spike-count distributions for the DG (a) and
Ising model (b) for population size n = 100 and u = 0.1 are
substantially different. (Large-n approximation, dashed grey
lines). Note that p = 0.25 is the critical correlation, and that
the Ising model is bimodal, despite the absence of higher-order
interactions. (c),(d) Population sparsities for the DG (c) and the
corresponding Ising model (d), (parameters as above, sparsity
normalized by population size). The DG is much sparser than the
Ising model for large population sizes.

distribution of the Ising model with matching pairwise
statistics is bimodal (corresponding to a ferromagnetic
phase), behaves very much like a mixture of two indepen-
dent distributions, and has vanishing sparsity. In fact, any
model with interactions of finite order will converge to a
mixture of independent distributions [13]. Thus, interac-
tions of all orders are necessary for achieving a continuous
asymptotic spike-count distribution, and the same sparsity
scaling as the DG. While these results were derived assum-
ing a completely homogeneous population, we conjecture
that sparsity in large, heterogeneous populations is still
dominated by high-order interactions.

Higher-order interactions increase heat capacity.—
Finally, we investigate the impact of common input on
the heat capacity of the population. A sharply peaked and
diverging specific heat (i.e., heat capacity normalized by
population size) is evidence for a physical system being at
a critical point [1]. This behavior has been observed for
neural populations as well as natural images [10,15], and it
has been argued that it has desirable consequences for
sensory coding. In addition, a diverging specific heat im-
plies that fluctuations around the mean log-probability—
the entropy—are nonvanishing in large populations.
We here show that our common input model is able to
capture this behavior: The distribution of any model
P(x) at some temperature T = 1/ is given by Pg(x) =
P(x)P/Zg, and the specific heat by ¢ = Var[log,Pz(x)]/n.

208102-3



PRL 106, 208102 (2011)

PHYSICAL REVIEW LETTERS

week ending
20 MAY 2011

8 -
n=5
L —DG
7 n=10 = Isi
6k 50 8 sing
g - 2
< 5| n=100 [®)
2 4f a
3 3t 2
Q.
D5l 0
50 100
1r Population size
0.25 0.5 1 2 4

Temperature T

FIG. 3 (color online). Scaling of specific heat: Specific heat of
the DG with mean pu = 0.1 and correlation p = 0.1 diverges at
T = 1. Inset: The specific heat of the DG at T =1 grows
linearly with population size, whereas it saturates for the Ising
model.

For large n, the spike-count distribution is Pg(K) =
exp[n(1 — B)n,(k/n)]P(K)P/Zg, and asymptotically this
yields cg =n [ fa(r)[n.(r)* — szﬁ]dr, where fjg is the
limiting distribution of P4(K).

Therefore, ¢z diverges linearly whenever this integral is
nonzero, which is the case for the DG and many other
models at 8 = 1. For B # 1, however, f4(r) is dominated
by the exponential, collapses to a delta-peak, and has finite
specific heat. Thus, the DG and any other infinite-range
model with interactions beyond second order has a critical
point at T =1 (Fig. 3). The pairwise Ising model is a
notable exception, as it does not have a phase transition,
and its specific heat is finite (Fig. 3 inset).

It is therefore informative to calculate the specific heat at
unit temperature as a function of the moments p and p. In
this case, the specific heat of the Ising model is

rr?(o 4+ p’ —p+1/4)
c. =
”’ 41 = 2Jryry)

Asymptotically, the heat capacity of the Ising model is
maximized for vanishing correlation, whereas the DG
attains its maximum at strong correlations, e.g., p = 0.37
for w = 0.1. We conclude that higher-order interactions
can have a strong impact on the specific heat: They lead to
a qualitatively different scaling behavior and criticality,
and influence the moments which maximize it.
Conclusions.—We showed that a simple model with
common inputs and spiking nonlinearities could qualita-
tively account for some of the complex structure of higher-
order correlations in neural population recordings. The DG
captures higher-order redundancies which increase with
second-order correlations, has a negative strain, increased
sparsity, and a divergent specific heat. Given the ubiquity
of common input in sensory systems, the model thus gives
quantitative predictions for the conditions under which
deviations from second-order models will be strong, and

loga(e). 3)

how these quantities should scale with population size. It is
worth remarking that our formulations can readily be
generalized to general input distributions or spike genera-
tion mechanisms. Further investigations will have to show
whether our results would also quantitatively account for
observations in heterogeneous populations. Finally, the
role of higher-order correlations for stimulus coding has
only been investigated experimentally in small populations
[4,8], and their impact in large populations remains un-
clear. As, in our model, a change in the mean input modi-
fies interactions of all orders, it can also facilitate our
understanding of the role of higher-order interactions in
stimulus coding.
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