Chapter 23

IDENTIFYING DIGITAL CAMERAS
USING CFA INTERPOLATION

Sevinc Bayram, Husrev Sencar and Nasir Memon

Abstract In an earlier work [4], we proposed a technique for identifying digital
camera models based on trace evidence left by their proprietary inter-
polation algorithms. This work improves on our previous approach by
incorporating methods to better detect interpolation artifacts in smooth
image parts. To identify the source camera model of a digital image, new
features that can detect traces of low-order interpolation are introduced
and used in conjunction with a support vector machine based multi-
class classifier. Experimental results are presented for source camera
identification from among multiple digital camera models.
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1. Introduction

Advances in digital technologies have given birth to very sophisticated
and low-cost hardware and software tools that simplify the creation, dis-
tribution and modification of digital images. This trend has raised new
challenges concerning the integrity and authenticity of digital images.
It is no longer possible to take the authenticity of digital images for
granted. Image forensics, in this context, is concerned with determining
the source and potential authenticity of a digital image.

Although digital watermarking technologies [2] have been introduced
to address this problem, their realization requires that a watermark be
embedded during the creation of a digital image. Essentially, this neces-
sitates digital cameras to have built-in watermarking capabilities. How-
ever, this approach has not been adopted by camera manufacturers.
Consequently, alternative approaches must be investigated to determine
the origin, veracity and nature of digital images. The problem is further
complicated by the requirement that a viable solution should require
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minimal prior knowledge about the specific digital camera model that
was used and the conditions under which the image was captured (blind
image authentication). To our knowledge, there are few, if any, tech-
niques that can achieve these goals.

The primary assumption underlying blind image authentication tech-
niques is that all images produced by a digital camera exhibit certain
characteristics that — regardless of the captured scene — are unique to
the camera due to its proprietary image formation pipeline. Practically
all digital cameras encode the camera model, type, date, time and com-
pression information in the EXIF image header. But this information
can be easily modified or removed, and, therefore, cannot be used for
authentication.

This paper focuses on the source camera model identification problem
by identifying traces of the proprietary interpolation algorithm deployed
by digital cameras. In particular, we improve on our earlier work [4]
by incorporating new methodologies to capture color filter array (CFA)
interpolation artifacts due to low-order interpolation.

The next section discusses current approaches for addressing the im-
age source identification problem. The following section, Section 3,
briefly describes the image formation process in digital cameras. Sec-
tion 4 reviews our earlier work [4] and provides details of the improved
approach. Section 5 presents the experimental results, and Section 6
contains our concluding remarks.

2. Current Solutions

In our prior work [7], we studied the source camera model identifi-
cation problem by identifying and selectively combining a set of image
features based on image quality metrics [3] and higher-order statistics
[9] of images. This approach requires the design of a classifier that cap-
tures the variations in designated image features from different digital
cameras.

Another promising approach was proposed by Lukas, et al. [§]. In
their work, an imaging sensor’s pattern noise is characterized via wavelet-
based image denoising. The reference noise pattern for a particular dig-
ital camera is obtained by averaging the obtained noise residual over a
number of high quality JPEG images captured by the camera. Then, a
given image is matched to the camera by correlating the noise pattern
of the camera (which is claimed to have captured the image in question)
with the individual noise pattern extracted from the image itself.

In more recent work [4], we exploited the fact that most state-of-the-
art digital cameras, due to cost considerations, employ a single mosaic
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structured color filter array (CFA) rather than different filters for each
color component. As a consequence, each pixel in the image has only
one color component associated with it, and each digital camera employs
a proprietary interpolation algorithm to obtain the missing color values
for each pixel.

Our approach [4] was inspired by the technique proposed by Popescu,
et al. [11], which was developed to detect image tampering. Their ra-
tionale was that the process of image tampering often requires an up-
sampling operation which, in turn, introduces periodic correlations be-
tween the image pixels. Popescu, et al. designated statistical measures
to detect these phenomena. In [4], we applied variants of these measures
to characterize interpolation algorithms deployed by digital camera mod-
els.

The technique presented in this paper improves on our approach in [4]
by designating new features. Because of perceptual image quality consid-
erations, designers must tailor the interpolation algorithm to deal with
different image features (edges, texture, etc.). This requires the intro-
duction of strong nonlinearities to the interpolation algorithm. However,
for relatively smooth image parts, most well-known interpolation algo-
rithms (e.g., bilinear and bicubic methods) ensure satisfactory quality,
and more expensive algorithms are not needed. Our premise is that most
proprietary algorithms deploy simpler forms of interpolation for smooth
image parts. Therefore, traces of the interpolations can be captured
more effectively in these portions as opposed to busy image parts where
interpolation requires more careful processing. For this purpose, we uti-
lize the results of [6], where the periodicity pattern in the second-order
derivative of an interpolated signal is analyzed.

3. Image Formation in Digital Cameras

The structure and sequence of processing in the image formation
pipelines of digital cameras are very similar despite the proprietary na-
ture of the underlying technologies. Light entering the lens of a digital
camera is filtered (using anti-aliasing and other filters) and focused on an
array of charge-coupled device (CCD) elements, i.e., pixels. The CCD
array is the primary and most expensive component of a digital camera.
Each light sensing element of the CCD array integrates incident light
over the whole spectrum and produces the corresponding electrical sig-
nal representation of the scene. Since each CCD element is essentially
monochromatic, capturing color images requires separate CCD arrays
for each color component. However, due to cost considerations, most
digital cameras use only a single CCD array. Different spectral filters,
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typically red, green and blue (RGB), are arranged in a pattern so that
each CCD element only senses one band of wavelengths. This spectral
filter pattern, or mask, is called the color filter array (CFA). The raw
image collected from the array is thus a mosaic of red, green and blue
pixels.

As each sub-partition of pixels only provides information about a num-
ber of green, red and blue pixel values, the missing RGB values for each
pixel must be obtained through interpolation (demosaicing). The inter-
polation is typically carried out by applying a weighting matrix (kernel)
to the pixels in the neighborhood of a missing value. Digital camera
manufacturers use proprietary demosaicing algorithms that have differ-
ent kernel size, kernel shape and interpolation functions. Demosaicing
is followed by a processing block, which typically involves operations
such as color processing and image compression to produce a faithful
representation of the scene that was imaged.

Although the image formation pipeline is identical for almost all dig-
ital cameras, the exact processing details at all stages vary from one
manufacturer to another, and even in different camera models from a
single manufacturer. Note that many components in the image forma-
tion pipeline, e.g., lenses, optical filters, CCD arrays, are produced by a
limited number of manufactures. Because of the overlap, cameras from
different manufacturers may exhibit similar qualities, and this should be
taken into consideration when associating image features with the dig-
ital cameras. However, the interpolation (demosaicing) algorithm and
the specific CFA pattern are often unique for each digital camera manu-
facturer. Our technique, which is described in the next section, exploits
variations in color interpolation to classify images taken by different
models of digital cameras.

4. Identifying Interpolation Traces

The methodology proposed by Popescu, et al. [11] analyzes traces of
up-sampling to identify images (or parts of images) that have undergone
resizing; this is accomplished by analyzing the correlation of each pixel
value to its neighbors. Since RGB channels are heavily interpolated in a
typical digital camera, in [4], we proposed a similar procedure to deter-
mine the correlation structure present in each color band and classified
images accordingly. Our experimental results showed that the size of
the interpolation kernel and the demosaicing algorithm vary from cam-
era to camera [7]. Furthermore, the interpolation operation is highly
non-linear, making it strongly dependent on the nature of the depicted
scenery. In other words, interpolation algorithms are fine-tuned to pre-
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vent visual artifacts. Busy parts of an image have over-smoothed edges
or poor color transitions, while smooth parts exhibit linear characteris-
tics. Consequently, we treat smooth and non-smooth portions of images
separately in our analysis.

4.1 Non-Smooth Image Parts

We employ the Expectation/Maximization (EM) algorithm to detect
traces of interpolation [11]. The EM algorithm has two main steps: an
expectation step followed by a maximization step. The expectation value
is computed with respect to the unknown underlying variables using the
current estimate of the parameters and conditioned on the observations.
The maximization step then provides a new estimate of the parameters.
These two steps are iterated until convergence [10].

The EM algorithm generates two outputs. One output is a two-
dimensional data array called a probability map; each array entry indi-
cates the similarity of an image pixel to one of the two groups of samples
(the ones correlated to their neighbors and those that are not) in a se-
lected kernel. Regions of the map identified by the presence of periodic
patterns indicate image parts that have undergone up-sampling. The
other output is the estimate of the weighting (interpolation) coefficients
that designate the contribution of each pixel in the interpolation kernel.

(a) (b) (b)

Figure 1. Frequency spectrum of probability maps obtained for (a) Nikon E-2100,
(b) Sony DSC-P51, (c) Canon Powershot S200 digital cameras.

Since no a priori information is assumed on the size of interpolation
kernel (which designates the number of neighboring components used
to estimate the value of a missing color component), probability maps
are obtained for varying kernel sizes. When observed in the frequency
domain, these probability maps yield peaks at different frequencies with
varying magnitudes, indicating the structure of the correlation between
the spatial samples. Our classifier relies on two sets of features: the set
of weighting coefficients obtained from an image, and the peak locations
and magnitudes in the frequency spectrum. Figure 1 presents sample
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magnitude responses of the frequency spectrum of probability maps for
three cameras (Sony, Nikon and Canon). The three responses clearly
differ in their peak locations and magnitudes.

4.2 Smooth Image Parts

Gallagher [6] showed that low-order interpolation introduces period-
icity in the variance of the second-order derivative of an interpolated
signal, which can be used to determine the interpolation rate and algo-
rithm. The interpolation detection algorithm first obtains the second-
order derivative of each row and averages it over all rows. When ob-
served in the frequency domain, the locations of the peaks reveal the
interpolation rate and the peak magnitudes determine the interpolation
method.

We employ a similar methodology to characterize the interpolation
rate and the interpolation algorithm employed by a digital camera. Most
digital cameras encode and compress images in JPEG format. Due to
8 X 8 block coding, the DC coefficients may also introduce peaks in
the second-order derivative implying the presence of some form of in-
terpolation operation at a rate of 8. Therefore, the peaks due to JPEG
compression have to be ignored when attempting to identify interpola-
tion algorithm.

Figure 2 displays the magnitudes of the frequency response for the
three models of digital cameras considered in this study. The variations
in magnitude indicate that differences exist in the deployed interpolation
algorithm. Therefore, the features extracted from each camera include
the peak locations (except those due to JPEG compression), their mag-
nitudes, and the energy of each frequency component with respect to
other frequency components at all color bands.

5. Experimental Results

An SVM classifier was used to test the effectiveness of our technique.
Several SVM implementations are available; we used the LibSVM pack-
age [5]. We also used the sequential forward floating search (SFSS)
algorithm to select the best features from a given set of features.

In the first set of experiments, we used the Sony DSC-P51 and Nikon
E-2100 camera models. The two cameras both have resolutions of 2
mega-pixels. The pictures are of size 1600 x 1200 pixels and are ob-
tained with maximum resolution, auto-focus, and other settings at de-
fault values. To reduce the dependency on the scenery being viewed, we
used pictures of the same scene that were taken by two cameras.
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Figure 2. Frequency spectrum of averaged second-order derivatives corresponding to
(a) JPEG compression and the three models of digital cameras, (b) Canon Powershot
5200, (c¢) Sony DSC-51, (d) Nikon E-2100 with JPEG output images.

A picture data set was created by capturing 140 images with each
camera model. One third of these images were used to train the clas-
sifier. The trained classifier was then used to classify the remaining
two-thirds of the images. We used 75 x 75 pixel parts of the images in
the experiments. An exhaustive search algorithm was used to partition
images into smooth and non-smooth parts based on the variance of each
block.

First, we extracted features assuming a 3 x 3 interpolation kernel for
the Sony and Nikon digital cameras. The accuracy was measured as
89.3%. Next, we extracted the features considering the neighboring 4
x 4 pixels; the correspondingly detection accuracy increased to 92.86%.
Finally, the same experiment was repeated for 5 x 5 neighborhoods,
which produced an accuracy of 95.71%.

The three corresponding confusion matrices are presented in Tables
1, 2 and 3, respectively. The data in the tables show that accuracy
improves for larger kernel sizes. These results suggest that the actual



296 ADVANCES IN DIGITAL FORENSICS II

size of the interpolation kernel used for CFA interpolation is not smaller
than the considered sizes, which was empirically known to be true [7].

Table 1. Confusion matrix for two cameras (3 X 3 interpolation kernel).

Predicted
Nikon Sony
3 07
Actual Nikon | 95.7% 4.3%
Sony 17.1% 82.9%

Table 2. Confusion matrix for two cameras (4 X 4 interpolation kernel).

Predicted
Nikon Sony
Actual Nikon | 91.4% 8.6%
Sony 5.7% 94.3%

Table 3. Confusion matrix for two cameras (5 X 5 interpolation kernel).

Predicted
Nikon Sony
Actual Nikon | 94.6% 5.4%
Sony 3.6% 96.4%

Table 4. Confusion matrix for two cameras (periodicity in second-order derivatives).

Predicted
Nikon Sony
Actual Nikon | 86.9% 13.1%
Sony 23.3% 76.7%

Similar results were obtained for the smooth image parts using the
features based on periodicity in the second-order derivatives. Table 4
shows the accuracy for the two camera case. Note that the latter set of
features is not as reliable as the former set of features.

To examine how the proposed features perform for the case of three
cameras, we added a Canon Powershot S200 camera to the set of cam-
eras being investigated. The picture set for the Nikon, Sony and Canon
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Table 5. Confusion matrix for three cameras (5 x 5 interpolation kernel).

Predicted
Nikon Sony Canon
Nikon | 85.7% 10.7% 3.6%
Actual | Sony | 10.7% 75.0% 14.3%
Canon 0.0% 10.7% 89.3%

Table 6. Confusion matrix for three cameras
(periodicity in second-order derivatives).

Predicted
Nikon Sony Canon
Nikon 76.8% 8.9% 14.3%
Actual | Sony | 12.5% 76.8% 10.7%
Canon | 19.6% 10.7% 69.6%

cameras included various scenery images downloaded from the Internet.
We extracted the features described in Sections 3.1 and 3.2 and used
SVM and SFSS to classify the three cameras. An accuracy of 83.33%
was obtained when features were extracted from 5 x 5 neighborhoods;
the corresponding confusion matrix is provided in Table 5. As shown
in Table 6, the accuracy dropped to 74.3% when we attempted to dis-
criminate cameras on the basis of features obtained from smooth image
parts.

Table 7. Confusion matrix for three cameras (combined set of features).

Predicted
Nikon Sony Canon
Nikon | 94.8% 1.5% 3.7%
Actual | Sony | 21% 95.3% 2.6%
Canon 0.0% 2.3% 97.7%

Finally, we combined the two sets of features and repeated the exper-
iment. In this case, the discrimination accuracy increased to 96% for
the three camera case as shown in Table 7. The increase in accuracy
indicates that the two sets of features capture different characteristics of
an image, enabling better identification of the source camera model.
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6. Conclusions

The technique proposed in this paper improves on our previous ap-
proach to source camera model identification. To detect traces of color
interpolation (artifacts) in RGB color channels, we incorporate several
features tuned to capture the periodicity in second-order derivatives from
the features obtained using the EM algorithm [4]. A classifier is then
designed using the combined set of features and tested to determine the
reliability of the selected features in discriminating the source camera
model from among two and three cameras. The results are promis-
ing; however, the technique is limited to images that are not heavily
compressed because compression artifacts suppress and remove spatial
correlations between pixels due to CFA interpolation.
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