
Chapter 9

CLASS-AWARE SIMILARITY HASHING
FOR DATA CLASSIFICATION

Vassil Roussev, Golden Richard III and Lodovico Marziale

Abstract This paper introduces “class-aware similarity hashes” or “classprints,”
which are an outgrowth of recent work on similarity hashing. The ap-
proach builds on the notion of context-based hashing to create a frame-
work for identifying data types based on content and for building char-
acteristic similarity hashes for individual data items that can be used
for correlation. The principal benefits are that data classification can
be fully automated and that a priori knowledge of the underlying data
is not necessary beyond the availability of a suitable training set.

Keywords: Similarity hashing, class-aware similarity hashing, classprints

1. Introduction

The problem of identifying the type of data inside a container (e.g., file
or disk image) has been studied for several years with few positive results.
Indeed, the ability to identify the underlying type of the data without
the help of file system metadata is very useful in data recovery operations
(file carving), especially as a means for validating the attempted data
recovery. For example, if a tool runs into text data while attempting to
carve a JPEG file, it is clear that the process is not on the right track.
This is important because data carving is routinely applied to target
images to recover (fragments of) deleted data and is often a valuable
source of information.

Another related problem is automated data correlation. Targets often
contain several terabytes of data, making it necessary to quickly separate
potentially relevant data from irrelevant data. The best strategy is to
use prior accumulated data to make the separation. Traditional forensic
investigations use large, sophisticated databases (e.g., for fingerprints
and DNA) to quickly zero in on relevant data. In digital forensics,



102 ADVANCES IN DIGITAL FORENSICS IV

success has come from using databases of hash values of known system
and application files, such as those maintained by NIST [6]. But it is
debatable if this approach will work when the databases contain billions
of hash values – would it be necessary to compute clusters just to perform
hash searches?

Traditional, file-based (cryptographic) hashing is useful but fragile;
it needs the exact binary representation of all versions of the objects
of interest. Several schemes have been proposed to address this issue.
Kornblum [5] has proposed a context-based approach that dynamically
splits a file into individually hashable chunks from which a composite
hash is produced. While the use of a hash-based context – which can be
traced to early research in information retrieval [1, 3] and is derived from
Rabin’s original work [8] – is a proven technique, the rest of the scheme
lacks robustness. Recently, we proposed a more robust approach [9]
based on Bloom filters [2], but it lacks an elegant mechanism for splitting
up arbitrary targets.

In [10] we refined the approach to create the multi-resolution similarity
(MRS) hashing scheme that can be applied to arbitrary targets. The
scheme clearly identifies similarities in data files that would be classified
by a human as being related (e.g., different drafts of the same document).
Also, the MRS hashing scheme can identify the presence of a contained
file (e.g., JPEG) inside a larger target (e.g., raw drive image) without
metadata or any other assistance from the file system.

An MRS hashing tool has significant performance advantages stem-
ming from the fact that it requires only a single sequential pass over an
image. In contrast, other file-based tools require access to file metadata,
which results in non-sequential disk access patterns.

Figure 1 illustrates the effects of non-sequential access on the through-
put of a modern hard drive, as measured by Intel’s IOMeter tool. As
little as 2% randomness in the workload can produce a 30% performance
penalty; 5% randomness can cut performance in half. With hard drive
capacities outpacing bandwidth and latency improvements [7], forensic
targets are increasing in size faster than the ability of forensic tools to
process them in a timely manner.

This paper discusses the use of class-aware similarity hashing to ad-
dress these issues. Empirical results using a custom tool show that
class-defining features can be automatically extracted for several classes
of commonly-used file types. In other words, it is practical to define
common file types solely based on syntactic features of their binary rep-
resentations.



Roussev, Richard & Marziale 103

Figure 1. Hard drive throughput for WDC WD5000KS (500 GB).

2. Similarity Hashing

This section briefly summarizes recent work on similarity hashing.
Interested readers are referred to [10] for additional details.

Block-level hashing is the most basic scheme for determining the sim-
ilarity of binary data. The technique generates and stores cryptographic
hashes for blocks of a chosen fixed size (e.g., 512 bytes). Block hashes
from two different sources can then be compared and, by counting the
number of blocks in common, a measure of similarity may be deter-
mined. The principal advantages of this scheme are that it is supported
by existing hashing tools and that it is computationally efficient; in fact,
the hash computations are faster than disk I/O.

However, block-level hashing has certain limitations when applied to
discover file similarity. The success of the technique depends heavily on
the physical layout of the files being similar. However, the insertion,
deletion or modification of just one character at the beginning of a file
could render all the block hashes different. Also, block hashes do not
help identify if an object (e.g., JPEG image) is embedded in a file (e.g.,
Microsoft Word document). In short, block hashing is too fragile and
negative results do not reveal any useful information.

Kornblum [5] proposed context-triggered piecewise hashing to address
the limitations of block-level hashing. The idea is to identify content
markers, called “contexts,” within (binary data) objects and to store
the sequence of hashes for each of the pieces (or chunks) in between



104 ADVANCES IN DIGITAL FORENSICS IV

Figure 2. Context-based hashing or “shingling.”

contexts (Figure 2). In other words, the boundaries of the chunk hashes
are not determined by an arbitrary fixed block size but are based on
object content. The hash of the object is simply a concatenation of the
individual chunk hashes. Thus, if a new version of the object is created
by localized insertions and deletions, some of the original chunk hashes
will be modified, reordered or deleted, but enough will remain in the
new composite hash to identify the similarity.

To identify a context, Kornblum’s ssdeep implementation uses a
rolling hash over a window of c bytes that slides over the target. If
the t lowest bits of the hash (the trigger) are all equal to one, a context
is detected, the hash computation of the preceding chunk is completed
and a new chunk hash is started. The value of t depends on the size
of the target because ssdeep generates a fixed-size result. Intuitively,
a larger t value produces less frequent context matches and reduces the
granularity of the hash.

We recently proposed Bloom filter similarity hashing [9], a scheme
utilizing Bloom filters to derive object similarity. This scheme uses the
(known) structure of an object to break it into components, which are in-
dividually hashed and placed in a Bloom filter. Using the mathematical
properties of filters, we demonstrated analytically and empirically that
the bitwise comparison of filters yields a useful measure of the similarity
between the binary representations of two or more objects.

In subsequent work [10], we combined Bloom filter similarity hash-
ing with context-based object decomposition (“shingling” [3]) to handle
arbitrary binary data. We also devised a standardized multi-resolution
scheme called MRS hashing that allows objects of arbitrary size to be
hashed without loss of resolution. Moreover, the scheme allows different-
sized objects to be compared; for example, it is possible to search for
the remnants of a 1 MB file inside a 100 GB target.

MRS hashing is very memory efficient due to the use of Bloom filters;
hash values are no more than 0.5% of target size. Thus, the complete
MRS hash of a 500 GB hard drive can fit in the main memory of a mod-



Roussev, Richard & Marziale 105

ern workstation. From the point of view of performance, MRS hashing
is no more expensive than block-level MD5 hashing, even when the un-
optimized version of MD5 is used. The comparison step is very efficient
and can be sped up by using lower resolution for large targets and/or
delegating comparisons to a graphics processor (e.g., NVidia G80); this
can speed up the process twenty times.

3. Class-Aware Similarity Hashing

As discussed in the preceding section, MRS hashes provide a sensitive
and tunable means for finding similarities among binary data objects.
But why are these objects similar? From our previous work, it appears
that MRS hashing works reasonably well for user-generated artifacts
(e.g., .jpg, .doc and .pdf files) in that the objects identified as being
similar stand out from other objects in their class.

However, this is not the case for other classes of objects such as ap-
plications and system libraries. When applied in its original form, MRS
hashing finds too many applications/libraries to be similar, which limits
its usefulness. Note that these matches are not false positives; the binary
representations of the objects are indeed similar. The observed syntactic
similarities are generally artifacts of the particular file format (common
headers, etc.) used by the compiler and statically-linked libraries. For
example, we discovered (to our surprise) that most of the libraries sam-
pled had repetitive functions. In other words, the same function code
was present multiple times. These functions tend to be small and are
likely compiler artifacts. Nonetheless, they increase the binary similar-
ity, but are not necessarily indicative of semantic similarity.

Therefore, the fundamental problem is: Is it possible to effectively
separate the class-common features (hashes) of an object from its char-
acteristic individual features? Solving this problem would permit the
definition of an object class (e.g., Microsoft Word documents) as a set
of context-based hashes that are commonly found in such objects. Fur-
thermore, it would lead to at least three important applications:

The data recovery process is enhanced by eliminating at least some
of the false positive results that plague virtually all file carving
tools.

The similarity hashing scheme is enhanced by separating the class-
common hashes from object-specific hashes; this would yield more
focused similarity results.

An unstructured target can be searched to estimate the number of
objects of different types without reading the file system. Informa-



106 ADVANCES IN DIGITAL FORENSICS IV

tion can be obtained after a single sequential pass over the target;
partial results could be presented while the operation is underway.
This would help in a triage process, which is often faced with a
large volume of data.

In addition to aiding regular digital forensic investigations, the latter
two applications could help in tricky legal situations where search and
seizure must be balanced against privacy concerns. The judicial system
has not as yet directly addressed the bounds of what is a reasonable
search in the digital world. Nevertheless, the capabilities listed above
could provide cause for search, e.g., a disk contains a file that is similar to
something relevant or the drive contains a large number of pictures. Just
as important, the capabilities could help rule out unlikely candidates.

This paper focuses on the validation of the concept of class-aware
similarity hashing. In particular, it attempts to verify the existence of
class-specific features that can be captured via hashing, to quantify the
number and coverage of these features, and to cross-validate the features
by comparing their performance for other classes of objects.

4. Empirical Study

The empirical study used a custom tool that implemented a counting
Bloom filter with a single hash function. This is equivalent to using a
hash table whose values correspond to the number of data chunks that
hash to the particular hash key. The procedure used is a variant of the
original MRS hashing scheme.

For each file, given parameters c and t:

1. Hash a sliding window of size c with the djb2 hash function.

2. If the t rightmost bits are all set to 1, declare a new context match and compute
an MD5 hash of the data chunk between the previous context and the current
one, and place it in the counting Bloom filter; advance the window by the
minimum chunk size (2t−2) and go to Step 1.
Otherwise, slide the window by one position.

3. If the end of file is reached, exit.
Otherwise, go to Step 1.

In the case of low-entropy data, a single file often contributes the
same hash value multiple times. To address this problem, a local filter
is created for each file and the number of hash value contributions is
limited to one per key (this is added to the total in the master table).
Note that this problem is not due to MRS hashing because it does not
use a counting filter.



Roussev, Richard & Marziale 107

The next step is to build a histogram which, for a given number k,
gives the number of filter locations that have a count k (i.e., k files
contain that hash). Based on the histogram, a notion of “coverage” is
defined for threshold r – the number of files that contain a hash that
has a count of at least r in the master table. Intuitively, it is desirable
to obtain maximum coverage with the fewest number of features, so the
search starts at the highest frequency and goes down in order. This
approach does not guarantee minimal coverage in terms of the number
of hashes, but it works fairly well in practice. Two other terms, “relative
coverage” and “coverage size,” are defined. The “relative coverage” is
the fraction of objects covered by hashes with count of at least r. The
“size” of a coverage is the number of hashes participating in the coverage.

Seven file sets were used in the empirical study. The first three file
sets, whose contents were obtained at random from the Internet, were
also used in our previous work [10]. The remaining four file sets contain
standard system files as described below.

doc: This set contains 355 files varying in size from 64 KB to
10 MB (total 298 MB).

xls: This set contains 415 files varying in size from 64 KB to 7 MB
(total 257 MB).

jpg: This set contains 737 files varying in size from 64 KB to 5 MB
(total 121 MB).

win-dll: This set contains 1,243 files (total 141 MB) from a fully-
patched WindowsXP system32 directory varying in size from 3 KB
to 640 KB.

win-exe: This set contains 343 files (total 46 MB) from the Win-
dowsXP system32 directory varying in size from 1 KB to 17 MB.

cyg-bin: This set contains 1,272 files (total 192 MB) from the bin
directory of Cygwin 2.4 (including all executable files) varying in
size from 3 KB to 7.6 MB.

ubu-bin: This set contains 445 files (total 63 MB) from the /usr/
bin directory of a fully-patched Ubuntu 6.06; the files varied in
size from 16 KB to 3.85 MB.

4.1 First-Order Analysis

The first task was to verify the hypothesis that data from different file
types exhibits common features that can be captured via context-based



108 ADVANCES IN DIGITAL FORENSICS IV

Table 1. First-order analysis of user data.

hashing. One feature is a hash value that is common to a set of data
objects of a specific class. The coverage of this feature includes all the
objects that contain the feature at least once. Ideally, a relatively small
set of features should cover as much as possible of the reference set.

First, we ran our custom tool against a set of 600 files (256 KB each)
of random data. The results showed that only two features were common
to five different files; all the other features were common to no more than
two files. This result is expected – random data should not exhibit any
features. High-entropy data objects (e.g., compressed and/or encrypted
objects) should exhibit similar results.

Table 1 summarizes the results for three common types of user-created
data: Microsoft Word documents (doc), Microsoft Excel spreadsheets
(xls) and JPEG images (jpg). All the hash values were generated using
similarity hashing as described in Section 4 with the parameters c = 8
and t = 5. The first column presents the number of hashes in the
cover, the second provides the relative coverage (percentage of the file
set covered) and the third gives the absolute number of files covered.
Thus, the row {5, 91, 335} means that the top five (“most popular”)
hashes cover 335 files, which constitute 91% of the files in the reference
set. Note that several intermediate rows are not shown for reasons of
space; only data that represents important trends is presented. Also,
the rows presented in boldface represent the coverage chosen for the
cross-analysis study in the next section.



Roussev, Richard & Marziale 109

Table 2. First-order analysis of system executables.

The results show that doc and xls files have compact and easily iden-
tifiable feature hash sets or “classprints” that represent the types. In
the case of doc files, only 20 feature hashes are required to provide 99%
coverage. The top four give 91% coverage, so choosing the cut-off point
can be somewhat subjective. The results are not as good for jpg files,
where a substantially larger feature set is required to cover the reference
files. Intuitively, the larger the feature set, the more instance-specific
the features it includes.

In all cases, the feature set was kept relatively small and the inflection
point was chosen so that the rate at which features need to be added
was greater than the rate at which coverage was increased. For example,
in the jpg case, the increase from 10 to 38 hash values yields an increase
in coverage from 59% to 72%; the next step, from 38 to 42 is relatively
small and yields a correspondingly modest improvement from 72% to
75%. However, the increase from 42 to 65 only yields an improvement
of 75% to 78%. Therefore, 42 was chosen as the cut-off point for the
experiments in the next section.

The analysis of system executables shows some interesting results (Ta-
ble 2). The sets were chosen so they had various degrees of commonality.
Specifically, all the sets primarily contain executable code for the Intel
x86 architecture. Although other resources could be bundled into an



110 ADVANCES IN DIGITAL FORENSICS IV

Table 3. Feature set intersection.

executable, these are relatively small system utilities that are unlikely
to contain much beyond code. The win-dll, win-exe and cyg-bin file sets
all contain Microsoft Windows code. The cyg-bin files correspond to the
Windows portion of the utilities under Unix/Linux, which are contained
in the ubu-bin file set. Both these types of files are compiled using gcc.

The main observation is that it is easy to identify the inflection points
for the win-dll, win-exe and ubu-bin file sets, but not for the cyg-bin set.
Part of the reason could be that cyg-bin contains more files than two of
the other sets; however, win-dll has about the same number of files and
does not have the same problem. The reference cover that was picked
has substantially more hash values (654) than for any of the other sets,
still the coverage is much lower – only 2/3 of the reference set.

In summary, the observed data shows that it is possible to define a
class-common feature set based on similarity hashes. The next task is
to establish whether or not these features are “class-defining,” i.e., they
are generally not present among the features of other classes.

4.2 Second-Order Analysis

Clearly, if the class-common features that are discovered are shared
by multiple classes, their analytical value is significantly diminished.
A second-order analysis was undertaken because there were reasons to
believe that some of the chosen sets may share features.

For completeness, all 21 possible (unordered) pairs of feature sets
were compared, and their intersections were computed in relative and
absolute terms. The results are presented in Table 3, which only shows
the non-zero elements. The table is symmetric in terms of the absolute
numbers; the figures in parentheses correspond to the intersections as
a fraction of the total number of features for the associated set (row).
For example, the xls and doc sets have three features in common, which



Roussev, Richard & Marziale 111

represents 43% of all features for the xls files and 17% of the features
for the doc files.

The results indicate that the {doc, xls} and {win-dll, win-exe} file
set pairs cannot be considered independent, which is not entirely unex-
pected. Nevertheless, just one feature from the intersection can provide
a useful hint about the content of a target because it helps eliminate a
large number of possibilities.

4.3 Estimating Drive Content

The next test involved the application of the doc feature set to esti-
mate the number of .doc files in a 7.2 GB Windows partition residing
on a personal laptop. First, the reference set was examined and the
average number of features matched by each file was computed. Next,
the number of matches against the unknown target was used to estimate
the number of .doc files in the Windows partition.

As it turned out, the original reference set was not ideal for this pur-
pose – it contained many files that had a very large number of feature
matches (the “top” file had 547 matches). Upon closer review, it was
discovered that this file contained a huge amount of repetitive informa-
tion. Clearly, a more systematic approach for selecting reference sets
would help avoid problems in such pathological cases.

Nonetheless, the median of nine feature matches per file was taken
and applied to the target Windows partition that had yielded 298 feature
matches. Thus, it was estimated that there were 298/9 = 33 Microsoft
Word documents on the partition. The actual count was 68, so the
estimate was off by a factor of two.

The approach has some potential, but more research is needed to im-
prove and validate this technique. Still, it is notable that features from a
training set were applied to a completely unknown and unrelated target;
this is evidence that the identified features are generic class features.

Another interesting point pertains to the throughput of the opera-
tion. The single-threaded, unoptimized version of the code was able to
perform the search in 2 hours and 44 minutes, corresponding to a rate
of 45 MB/s. This is significant because the code is parallelizable so 2-4
threads on a dual- or quad-core processor should keep up with the sus-
tained 80-100 MB/s transfer rate of current large-capacity HDDs. In
other words, valuable information could be obtained during the initial
cloning of a target without incurring any latency overhead. Furthermore,
the operation is constrained by hash value generation, so estimates for
multiple types of data could easily be performed in a single run with
virtually no impact on performance.



112 ADVANCES IN DIGITAL FORENSICS IV

5. Conclusions

Class-aware similarity hashing is an attractive technique for automat-
ically extracting class-defining feature sets (classprints) and for identi-
fying data types based on content. Our empirical study demonstrates
that classprints can be generated for several common file types; in other
words, the file types can be defined solely in terms of syntactic fea-
tures of their binary representation. The overall scheme requires a
modest amount of storage during the extraction phase and a negligi-
ble amount for the classprints. Experiments indicate that hashing rates
above 1 Gbit/s can be sustained; this exceeds the transfer rates of current
generation high-capacity (500 GB+) hard drives. The hashing scheme
also enables investigators to ask very generic questions about targets
without violating privacy concerns. In fact, it is possible to discover
whether or not a drive contains documents (or document remnants) of
a particular type without examining file names or metadata.

References

[1] S. Brin, J. Davis and H. Garcia-Molina, Copy detection mechanisms
for digital documents, Proceedings of the ACM SIGMOD Interna-
tional Conference on the Management of Data, pp. 398–409, 1995.

[2] B. Bloom, Space/time tradeoffs in hash coding with allowable er-
rors, Communications of the ACM, vol. 13(7), pp. 422–426, 1970.

[3] A. Broder, S. Glassman, M. Manasse and G. Zweig, Syntactic clus-
tering of the web, Proceedings of the Sixth International World Wide
Web Conference, pp. 391–404, 1997.

[4] A. Broder and M. Mitzenmacher, Network applications of Bloom
filters: A survey, Internet Mathematics, vol. 1(4), pp. 485–509, 2005.

[5] J. Kornblum, Identifying almost identical files using context trig-
gered piecewise hashing, Proceedings of the Sixth Digital Forensic
Research Workshop, 2006.

[6] National Institute of Standards and Technology, National Software
Reference Library, Gaithersburg, Maryland (www.nsrl.nist.gov).

[7] D. Patterson, Latency lags bandwidth, Communications of the
ACM, vol. 47(10), pp. 71–75, 2004.

[8] M. Rabin, Fingerprinting by Random Polynomials, Technical Re-
port TR-15-81, Center for Research in Computing Technology, Har-
vard University, Cambridge, Massachusetts, 1981.



Roussev, Richard & Marziale 113

[9] V. Roussev, Y. Chen, T. Bourg and G. Richard III, md5bloom:
Forensic file system hashing revisited, Proceedings of the Sixth Dig-
ital Forensic Research Workshop, 2006.

[10] V. Roussev, G. Richard III and L. Marziale, Multi-resolution simi-
larity hashing, Proceedings of the Seventh Digital Forensic Research
Workshop, 2007.


