Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular strategies for gene containment in transgenic crops

An Erratum to this article was published on 01 August 2002

Abstract

The potential of genetically modified (GM) crops to transfer foreign genes through pollen to related plant species has been cited as an environmental concern. Until more is known concerning the environmental impact of novel genes on indigenous crops and weeds, practical and regulatory considerations will likely require the adoption of gene-containment approaches for future generations of GM crops. Most molecular approaches with potential for controlling gene flow among crops and weeds have thus far focused on maternal inheritance, male sterility, and seed sterility. Several other containment strategies may also prove useful in restricting gene flow, including apomixis (vegetative propagation and asexual seed formation), cleistogamy (self-fertilization without opening of the flower), genome incompatibility, chemical induction/deletion of transgenes, fruit-specific excision of transgenes, and transgenic mitigation (transgenes that compromise fitness in the hybrid). As yet, however, no strategy has proved broadly applicable to all crop species, and a combination of approaches may prove most effective for engineering the next generation of GM crops.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Potential strategies for restricting gene flow.

Similar content being viewed by others

References

  1. Hurst, L.D. Cytoplasmic genetics under inbreeding and outbreeding. Proc. Royal Soc. London B 258, 287–298 (1994).

    Article  Google Scholar 

  2. Gressel, J. Molecular Biology in Weed Control (Taylor and Francis, London, 2002).

    Google Scholar 

  3. Vielle-Calzada, J.P., Baskar, R. & Grossniklaus, U. Delayed activation of the paternal genome during seed development. Nature 404, 91–94 (2000).

    Article  CAS  Google Scholar 

  4. Avni, A. & Edelman, M. Direct selection for paternal inheritance of chloroplasts in sexual progeny of Nicotiana. Mol. Gen. Genet. 225, 273–277 (1991).

    Article  CAS  Google Scholar 

  5. Corriveau, J.P. & Coleman, A.W. Rapid screening method to detect potential biparental inheritance of plastid DNA and results for over 200 angiosperm species. Am. J. Botany 75, 1443–1458 (1988).

    Article  Google Scholar 

  6. Tilney-Bassett, R.A.E. & Abdel-Wahab, O.A.L. Maternal effects and plastid inheritance, in Maternal Effects in Development (eds Newth, D. R. & Balls, M.) 29–45 (Cambridge University Press, Cambridge, 1979).

    Google Scholar 

  7. Hagemann, R. & Schroeder, M. The cytological basis of plastid inheritance in angiosperms. Protoplasma 152, 57–64 (1989).

    Article  Google Scholar 

  8. Daniell, H., Datta, R., Varma, S., Gray, S. & Lee, S.B. Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nat. Biotechnol. 16, 345–348 (1998).

    Article  CAS  Google Scholar 

  9. Ruf, S., Hermann, M., Berger, I.J., Carrer, H. & Bock, R. Stable genetic transformation of tomato plastids—high-level foreign protein expression in fruits. Nat. Biotechnol. 19, 870–875 (2001).

    Article  CAS  Google Scholar 

  10. Daniell, H., Khan, M.S. & Allison, L. Milestones in chloroplast genetic engineering: an environmentally friendly era in biotechnology. Trends Plant Sci. 7, 84–91 (2001).

    Article  Google Scholar 

  11. Daniell, H. & Dhingra, A. Multiple gene engineering: dawn of an exiting new era in biotechnology. Curr. Opin. Biotechnol. 13, 136–141 (2002).

    Article  CAS  Google Scholar 

  12. Scott, S.E. & Wilkinson, M.J. Risks of transgene escape from transplastomic oilseed rape. Nat. Biotechnol. 17, 390–392 (1999).

    Article  CAS  Google Scholar 

  13. DeCosa, B., Moar, W., Lee, S.B., Miller, M. & Daniell, H. Overexpression of the Bt Cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat. Biotechnol. 19, 71–74 (2001).

    Article  CAS  Google Scholar 

  14. Daniell, H., Muthukumar, B. & Lee, S.B. Engineering the chloroplast genome without the use of antibiotic selection. Curr. Genet. 39, 109–116 (2001).

    Article  CAS  Google Scholar 

  15. Kota, M. et al. Overexpression of the Bacillus thuringiensis Cry2A protein in chloroplasts confers resistance to plants against susceptible and Bt-resistant insects. Proc. Natl. Acad. Sci. USA 96, 1940–1845 (1999).

    Article  Google Scholar 

  16. DeGray, G., Smith, F., Sanford, J. & Daniell, H. Expression of an antimicrobial peptide via the chloroplast genome to control phytopathogenic bacteria. Plant Physiol. 127, 852–862 (2001).

    Article  CAS  Google Scholar 

  17. Lee, S.B., Byun, M.O. & Daniell, H. Accumulation of trehalose within transgenic chloroplasts confers drought tolerance. Transgenic Res., in press (2002)

  18. Daniell, H., Lee, S.B., Panchal, T. & Wiebe, P.O. Expression and assembly of the native cholera toxin B subunit gene as functional oligomers in transgenic tobacco chloroplasts. J. Mol. Biol. 311, 1001–1009 (2001).

    Article  CAS  Google Scholar 

  19. Eastham, K. & Sweet, J. Genetically Modified Organisms (GMOs): The Significance of Gene Flow Through Pollen Transfer. Environmental Issue Report 28 (European Environmental Agency, Copenhagen, Denmark, 2002).

  20. Mariani, C., DeBeuckeleer, M., Trueltner, J., Leemans, J. & Goldberg, R.B. Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature 347, 737–741 (1990).

    Article  CAS  Google Scholar 

  21. Hall, L.M. et al. Pollen flow between herbicide-resistant Brassica napus is the cause of multiple resistant B. napus volunteers. Weed Sci. 48, 688–694 (2000).

    Article  CAS  Google Scholar 

  22. Odell, J.T. Site specific recombination in plant cells. WO 91/09957 (1991).

  23. Odell, J.T., Hoopes, J.L. & Vermerris, W. Seed-specific gene activation mediated by the Cre/lox site-specific recombination system. Plant Physiol. 106, 447–458 (1994).

    Article  CAS  Google Scholar 

  24. Russell, S.H., Hoopes, J.L. & Odell, J.T. Directed excision of a transgene from the plant genome. Mol. Gen. Genet. 234, 49–59 (1992).

    CAS  PubMed  Google Scholar 

  25. Tomes, D.T. Genetic constructs and methods for producing fruits with very little or diminished seed. WO 97/40179 (1997).

  26. Koivu, K., Kanerva, A. & Pehu, E. Molecular control of transgene escape from genetically modified plants. Plant Sci. 160, 517–522 (2001).

    Article  Google Scholar 

  27. Koltunow, A.M., Bicknell, R.A. & Chaudhury, A.M. Apomixis: molecular strategies for the generation of genetically identical seeds without fertilization. Plant Physiol. 108, 1345–1352 (1995).

    Article  CAS  Google Scholar 

  28. Jepson, I. Inducible herbicide resistance. WO 97/06269 (EPO 0843730) (1997)

  29. Keenan, R.J. & Stemmer, W.P.C. Nontransgenic crops from transgenic plants. Nat. Biotechnol. 20, 215–216 (2002).

    Article  CAS  Google Scholar 

  30. Gressel, J. Tandem constructs: preventing the rise of superweeds. Trends Biotechnol. 17, 361–366 (1999).

    Article  CAS  Google Scholar 

  31. Steber, C.M., Cooney, S.E. & Mccourt, P. Isolation of the GA-response mutant sly1 as a suppressor of ABI1-1 in Arabidopsis thaliana. Genetics 149, 509–521 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lilegren, S.J. et al. SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature 404, 766–770 (2000).

    Article  Google Scholar 

  33. Webb, S.E., Appleford, N.E.J., Gaskin, P. & Lenton, J.R. Gibberellins in internodes and ears of wheat containing different dwarfing alleles. Phytochemistry 47, 671–677 (1998).

    Article  CAS  Google Scholar 

  34. Peng, J. et al. “Green revolution” genes encode mutant gibberellin response modulators. Nature 400, 256 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author is grateful to the editor of Nature Biotechnology, Andrew Marshall, for valuable contributions and thorough editing of this manuscript. The author also thanks Jonathan Gressel (Weizmann Institute of Science, Rehovot, Israel) for providing an advance copy of the material in the forthcoming book Molecular Biology in Weed Control, Jeremy Sweet (NIAB, Cambridge) for critical comments, and Chuck Niblett (University of Florida, Gainesville, FL) for editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry Daniell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daniell, H. Molecular strategies for gene containment in transgenic crops. Nat Biotechnol 20, 581–586 (2002). https://doi.org/10.1038/nbt0602-581

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0602-581

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing