Learning Bayesian Network Parameters Under
Order Constraints

Ad Feelders, Linda C. van der Gaag
Institute of Information and Computing Sciences, Utrecht University,
PO Box 80.089, 3508 TB Utrecht, The Netherlands

Abstract

We consider the problem of learning the parameters of a Bayesian network from data, while
taking into account prior knowledge about the signs of influences between variables. Such
prior knowledge can be readily obtained from domain experts. We show that this problem of
parameter learning is a special case of isotonic regression and provide a simple algorithm for
computing isotonic estimates. Our experimental results for a small Bayesian network in the
medical domain show that taking prior knowledge about the signs of influences into account
leads to an improved fit of the true distribution, especially when only a small sample of data
is available. More importantly, however, the isotonic estimator provides parameter estimates
that are consistent with the specified prior knowledge, thereby resulting in a network that is
more likely to be accepted by experts in its domain of application.

1 Introduction

Bayesian networks by now are widely accepted as powerful tools for representing and reasoning
with uncertainty in decision-support systems. A Bayesian network is a concise model of a joint
probability distribution over a set of stochastic variables [1]; it consists of a directed acyclic graph
that captures the qualitative dependence structure of the distribution and a numerical part that
specifies conditional probability distributions for each variable given its parents in the graph.
Since a Bayesian network defines a unique distribution, it provides for computing any probability
of interest over its variables.

For constructing a Bayesian network, often knowledge is acquired from experts in the domain
of application. Experience shows that domain experts can quite easily and reliably specify the
graphical structure of a network [2], yet tend to have more problems in coming up with the
probabilities for its numerical part [3]. If data from every-day problem solving in the domain
are available therefore, one would like to use these data for estimating the probabilities that are
required for the graphical structure to arrive at a fully specified network. Often, unfortunately,
the available data sample is quite small, giving rise to inaccurate estimates. These inaccuracies
may then lead to a reasoning behaviour of the resulting network that violates common domain
knowledge, and the network will not easily be accepted by experts in the domain.

While domain experts often are found to have difficulties in coming up with probability assess-
ments, evidence is building up that they feel more comfortable with providing qualitative knowl-
edge about the probabilistic influences between the variables concerned [2, 4]. The qualitative
knowledge provided by the experts, moreover, tends to be more robust than their numerical as-
sessments. We demonstrate in this paper that expert knowledge about the signs of the influences
between the variables in a Bayesian network can be used to improve the probability estimates
obtained from small data samples. We show how these signs impose order constraints on the
probabilities required for the network. We then show that the problem of estimating probabilities
under these order constraints is a special case of isotonic regression. Building upon this property,



we present an estimator that is guaranteed to produce probability estimates that reflect the qual-
itative knowledge that has been specified by the experts. The resulting network as a consequence
is less likely to exhibit counterintuitive reasoning behaviour and is more likely to be accepted than
a network with unconstrained estimates.

The paper is organised as follows. In the next section, we briefly review Bayesian networks and
qualitative influences. In section 3, a small network in medicine is introduced; we show that this
network may reveal highly counterintuitive reasoning behaviour when quantified with probability
estimates from a small data sample that do not adhere to the specified domain knowledge. In
section 4, we discuss isotonic regression and provide two algorithms for its computation; in section 5
then, we show that the problem of learning constrained network parameters is a special case of
isotonic regression. We study the complexity of one of the algorithms in section 6. In section 7,
we report on experiments that we performed on our small example network. In the final section,
we draw a number of conclusions from our work and indicate interesting directions for further
research.

2 Preliminaries

We briefly review a number of concepts from the field Bayesian networks that we will use in the
sequel.

2.1 Bayesian networks

A Bayesian network is a concise representation of a joint probability distribution over a set of
stochastic variables X = (Xi,...,X,,). In the sequel, we assume all variables to be binary,
adopting one of the values 0 and 1; slightly abusing terminology, we will sometimes say that X;
occurs or is present if it has the value 1. The network consists of a directed acyclic graph in which
each node corresponds with a variable and the arcs capture the qualitative dependence structure of
the distribution. The network further includes a number of conditional probabilities, or parameters,
p(X; | Xy ;) for each variable X; given its parents X ;) in the graph. The graphical structure and
associated probabilities with each other represent a unique joint probability distribution Pr(X)
over the variables involved, which is factorised according to

Pr(X) = HP(Xz' | Xw(i))

2.2 Parameter estimation

The parameters of a Bayesian network can be estimated from a data sample D; in this paper
we assume that the sample does not include any missing values. Let n(x;,X(;)) denote the
number of observations in D in which the variable X; has adopted the value x; and its parents
X (i) have taken for their values the configuration x.(;). Under the assumption that the various
different parameters of a network are unrelated, their estimation decomposes into a number of
independent estimation problems, one for each variable and possible parent configuration. The
standard estimate for a parameter p(z; | X ;) is

R (T4, X (i)
P(xi | Xn(i)) = ———
@ n(Xr(i))

This estimate has been shown to maximise the log-likelihood ¢(p | D) of the network’s parameters
p given the available data, where

{p|D) Z Z n(xi, X)) - log p(ai | Xri)

=1 z;,X 7 (i)



2.3 Qualitative influences

A Bayesian network in essence models the probabilistic influences between its variables. The
concept of qualitative influence has been designed to describe these influences in a qualitative way
[5]. A qualitative influence between two variables expresses how observing a value for the one
variable affects the probability distribution for the other variable. A positive qualitative influence
of a variable X on a variable Y along an arc X — Y in the network, then means that the occurrence
of X increases the probability of Y occurring, assuming that the values of the other parents of Y
remain the same, that is,

pY=11X=1s8)>pY =1|X=0,s)

for any combination of values s for the set of parents of Y other than X. Similarly, there is a
negative influence between X and Y along the arc X — Y if the occurrence of X decreases the
probability of Y occurring, that is, if

pY=1]X=1s)<pY =1]X=0,s)

for any combination s. A positive qualitative influence of X on Y is denoted by X .Y and a
negative influence by X — Y.

3 A motivating example

As an example of the effect of parameter estimates from small data samples, we consider a small
Bayesian network in the medical domain. We take the following fragment of medical knowledge
adapted from [6]:

Consider a primary tumour with an uncertain prognosis in an arbitrary patient. The cancer
can metastasize to the brain and to other sites. Metastatic cancer (MC) may be detected
by an increased level of serum calcium (ISC). The presence of a brain tumour (B) may be
established from a CT scan (CT). Severe headaches (SH) are indicative of the presence of
a brain tumour. Both a brain tumour and an increased level of serum calcium are likely to
cause a patient to fall into a coma (C') in due course.

From the domain knowledge, the graphical structure depicted in figure 1 has been configured.
A domain expert in addition has provided the signs of the various qualitative influences in the
network; these signs are shown in the figure over the graph’s arcs. The positive sign of the influence
of the variable B on the variable C' for example expresses that the presence of a brain tumour
increases the probability of the patient falling into a coma, regardless of his level of serum calcium.

Figure 1: The Brain Tumour network



Now suppose that just a small data sample, of 50 patient cases, is available for quantifi-
cation purposes, from which the following maximum-likelihood estimates for the parameters
p(C | B,15C) are obtained:

poiBsc(l|1,1) = % =05 poiB,rsc(1]0,1) = %1431 =0.929
peiB,rsc(1]1,0) =5 =0.5 Peip,rsc(1]0,0) = 35 = 0.031

In the network supplemented with these estimates, a patient with an increased calcium level and
no brain tumour would have a 93% chance of falling into a coma, whereas a patient with an
increased calcium level as well as a brain tumour would see this probability drop to 50%. These
inference results clearly violate the qualitative knowledge provided by the domain expert. It will
further be evident that a network from which such counterintuitive inferences are made, would
not be easily accepted by any physician.

4 Isotonic Regression

Our approach to obtaining parameter estimates for a Bayesian network that satisfy the qualitative
influences specified by experts, is a special case of isotonic regression [7]. In this section we review
isotonic regression in general; in the next section we discuss its application to parameter estimation
for Bayesian networks.

Let Z = {21, 22,...,2n} be a nonempty finite set of constants and let < be a partial order on
Z. Any real-valued function f on Z is called isotonic with respect to < if, for any z,2’ € Z, z < 2’
implies f(z) < f(z’). We assume that each element z; of Z is associated with a real number g(z;);
these numbers typically are estimates of the function values of an unknown isotonic function on
Z. Each element of Z further has associated a positive weight w(z;) that indicates the precision
of this estimate. An isotonic function ¢* on Z now is an isotonic regression of g with respect to
the weight function w and the partial order < if and only if it minimises the sum

n

> w(z) - [f(z) —g(z)]

i=1

within the class of isotonic functions f on Z. The existence of a unique ¢g* has been proved by
Brunk [8].

Isotonic regression provides a solution to many estimation problems in which we have prior
knowledge about the order of the parameters to be estimated. As an example, we suppose that
we would like to estimate a vector of means

M= (N(Zl)7:u(z2)7 s ,/J,(Zn))

where p(z;) denotes the mean in population z;. We assume that an expert has provided prior
knowledge about the order of these means, which amounts to p(z;) being isotonic with respect to
some partial order < on the collection of populations Z. Let n; denote the number of observations
sampled from population z;, and let the observations Y;; be normally distributed with Y;; ~
N(u(z),02), 5 =1,...,n;. Then, the isotonic regression of the estimates Y; = 27:1 Y;;/n; with
weights w(z;) = n; provides the order-constrained maximum-likelihood estimate of pu. As another
example, we suppose that we want to estimate binomial parameters

pP= (p(Zl),p(Zz), s ’p(zn))

where p(z;) denotes the probability of success in population z;. Again, we assume that an expert
has provided prior knowledge about the order of these probabilities, which amounts to p(z;) being
isotonic with respect to some partial order < on Z. Let m; denote the number of observations
sampled from population z;, and let the number of successes Y; be binomially distributed with
Y; ~ B(n;, p(z;)). Then, the isotonic regression of the estimates Y; = Y; /n; with weights w(z;) = n;
provides the order-constrained maximum-likelihood estimate of p. Note that the examples suggest



that the order-constrained estimates are obtained by first computing the unconstrained estimates
and then performing the isotonic regression of these estimates with appropriate weights.

The problem of computing the isotonic regression can be solved by quadratic programming
methods. Various dedicated algorithms, often restricted to a particular type of order, have been
proposed as well. For Z linearly ordered, for example, the pool adjacent violators (PAV) algorithm
was developed [9]. This algorithm considers a nonempty finite set of constants Z = {z1, 22, ..., 2}
with the total order z; = z9 < ... X z,. Associated with the set are vectors g = (g(21),...,9(2n))
and w = (w(zy1),...,w(z,)) with g(z;) and w(z;) as before. Within the algorithm, the weighted
average of the function g over the subinterval, or block, [p, q] of [1,n] with p < g, is defined as

Av(p,q) = Zj_p;i (Z;)(;,»g)(zj)

The PAV algorithm now computes the isotonic regression g* of g with respect to w and < as
follows:

PoolAdjacentViolators (g, w)
Blocks = [[1,1],[2,2], ..., [n,n]]
For each block [4,4] do
wli, 3] = w(z)
Av[i, i) = g(z:)
od
While there are blocks [p, q], [¢ + 1, r] with Av[p,q] > Av[g+ 1,7] do
Replace blocks [p, g] and [¢ + 1,7] by block [p, r] with
weight w[p, r] = w[p, ¢] + wlg + 1, r] and
[pv q] : Av[pv Q] + w[q + 1, 7'] . AV[q +1, T’]
wlp, q] + wlg +1,7]

weighted average Av[p,r] = v

od
For each block [p, ¢] do

9" (zj) = Av[p, ] for all j € [p, q]
od
Return g*

The algorithm does exactly what its name suggests: as long as there are two adjacent blocks
whose weighted averages of the function g violate the imposed order constraints, these two blocks
are pooled, that is, they are merged into a single block with a new weight and a new average.
The PAV algorithm thus resolves violations of the order constraints by averaging the function
values of g over consecutive elements of Z. For the final solution, the set Z is partitioned into
sets of consecutive elements, called solution blocks, on which the isotonic regression g* is constant
and equal to the weighted average of the original values of g within that block. Note that if g
already satisfies the imposed order constraints, then the PAV algorithm simply returns g* = g.
The algorithm is readily shown to have a time complexity that is linear in the size of the set of
constants [10].

The PAV algorithm requires a total order on the set of constants for which an isotonic regression
is to be computed. For our application, however, we require an algorithm that is applicable to
sets of constants with arbitrary partial orders. For this purpose we will use the minimum lower
sets (MLS) algorithm proposed by Brunk [11]. This algorithm builds upon the concept of lower
set. A subset L of Z is a lower setof Z if z € L, 2/ € Z, and 2/ < z imply 2z’ € L. Within the
algorithm, the weighted average of a function g on Z for a nonempty subset A of Z is defined as

> eaw(2)9(2)
> eaw(z)
The algorithm takes for its input the set of constants Z = {z1,22,...,2,} with an arbitrary

partial order <. With the set Z again are associated a vector w of weights and a vector g of
real numbers. The algorithm returns the isotonic regression g* of g with respect to w and <.

Av(A) =



Just like the PAV algorithm, the MLS algorithm resolves violations of the order constraints by
averaging over suitably chosen subsets of Z. For the final solution, it partitions the set Z into a
number of subsets on which the isotonic regression is constant. These subsets are no longer blocks
of consecutive elements of Z however, but lower sets. The first subset By in the final solution is
a lower set of (Z, <). The second subset is a lower set of (Z \ By, =<2), where the partial order
=5 is obtained from =< by removing all order relations involving elements of By. This process is
continued until the set Z is exhausted. In each iteration the lower set with minimum weighted
average is selected for the solution; in case multiple lower sets attain the same minimum, their
union is taken.

MinimumLowerSets(Z, <X, g, w)
L = Collection of all lower sets of Z wrt <
Repeat
B=U{A € L]|Av(A) =minres Av(L)}
For each z € B do
4" (2) = Av(B)
For each L € £ do
L=L\B
Z=27Z\B
Until Z =0
Return g*

The bottleneck of the algorithm from a computational point of view clearly is the generation of
the lower sets, which is exponential in the size of the set of constants. We will return to this issue
presently.

5 Learning network parameters with order constraints

We address the maximume-likelihood estimation of parameters for a Bayesian network subject to
the constraints that are imposed by the signs that have been provided by experts for the network’s
qualitative influences. We show more specifically that this constrained estimation can be viewed
as a special case of isotonic regression. Before doing so, we would like to note that in the presence
of qualitative influences the parameters associated with the different parent configurations for a
variable are no longer unrelated; in fact, only those combinations of parameter values are feasible
that are isotonic with respect to the order imposed by the signs of the influences. The parameters
associated with different variables are still unrelated however, because the sign of an influence
imposes constraints on the parameters for a single variable only. We restrict our presentation
therefore to a single variable and its parents.

5.1 Order constraints imposed by the signs of qualitative influences

We consider a variable Y with the parents Xi,...,X%. Let Q(X;) = {0,1} denote the domain
of values for the parent X; and let Q(X) = Q(X;) x ... x Q(X%) = {0,1}* consist of vectors
x = (21,..., ) of values for all k parents, that is, (X) is the set of all parent configurations for
Y. We now use the signs that have been specified for the qualitative influences on Y to define an
order on its parent configurations. We take a positive qualitative influence of X; on Y to impose
the order < with 0 < 1 on Q(X;); a negative influence of X; is taken to impose 1 < 0 on Q(X;). If
no sign for the influence of X; on Y has been specified, we have that neither 0 < 1 nor 1 < 0, that
is, the values 0 and 1 are taken to be incomparable. We then say that the influence is unsigned,
positive and negative influences are called signed influences. The signs of the separate qualitative
influences of X1, ..., X} on Y now impose a partial order < on Q(X) where for any x,x’ € Q(X)
we have that
x= (@1, 28) X = (2., 24)

if and only if z; < zj for all ¢. In the sequel, we will use the signs that have been specified for the
various influences to constrain the parameters p(y = 1 | x) to be non-decreasing on (2(X), <).
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Figure 2: A Bayesian network fragment with qualitative influences

Throughout the paper, we will assume that a domain expert specifies the signs of the qualitative
influences between the variables in a network. We would like to mention that for real-life appli-
cations these signs are quite readily obtained from experts by using a special-purpose elicitation
technique tailored to the acquisition of probability orders [4].

5.2 Parameter estimation with order constraints

In the previous section, we have established the partial order < that is imposed by the signs
of the qualitative influences on a variable Y, on its parent configurations. We now exploit this
partial order to obtain parameter estimates that reflect the qualitative knowledge that has been
specified through these signs. We recall that the unconstrained maximume-likelihood estimate of
a parameter p(y = 1| x) equals

A n(Y =1,x)

The isotonic regression p* of the estimates p with weights w(x) = n(x) now provides the maximum-
likelihood estimates of the parameters p(y = 1 | x), subject to the specified order constraints
[12,7(page 32)].

To illustrate the construction of the partial order on Q(X) and the computation of the isotonic
estimates, we consider a small fragment of a Bayesian network. The network includes a variable
Y and its three parents X;, Xo and X3, as depicted in figure 2; the parent X; has a positive
qualitative influence on Y, X5 has a negative influence on Y, and the influence of X35 on Y is
unsigned. Figure 3 now shows the partial order that is imposed, by the specified signs, on the
various parent configurations for Y, where an arrow from a configuration x to a configuration x’
indicates that x immediately precedes x’ in the ordering. Note that since the influence of the
parent X3 on Y is unsigned, any two parent configurations that differ in their value for X3 are
incomparable. As a consequence, the set of configurations Q(X) is partitioned into two disjoint
subsets, one for X3 = 0 and one for X3 = 1, such that no element of the first subset is order

(001) «—(0,1,1)

e, T,

(0,0,00 «—(0,1,0 (1,01) «—(1,1,1)

(1,000 «— (11,0

Figure 3: The partial order on the parent configurations for Y



Table 1: The counts and unconstrained ML estimates for y = 1
X3=0 X,=0 Xo=1]] X3=1 X,=0 X, =1
X1=0| 4/10=04 1] 6/20=03 | X; =0 4/20=0.2 3/5=0.6
X1=1]12/15=08 | 24/40=06 || X; =1 | 9/10=0.9 | 20/40 = 0.5

related to any element of the second subset. Constrained estimates may therefore be computed
for the two subsets separately, that is, as if they were distinct spaces [12].

Now suppose that we have a small sample of data available with respect to the four variables.
Table 1 shows the counts, per parent configuration, that are obtained from the sample as well
as the associated unconstrained maximum-likelihood estimates p(y = 1 | x). We recall that
the estimates are constrained to be non-increasing in each row and non-decreasing within each
column for both X3 = 0 and X3 = 1. From the table, we observe that, for X5 = 0, the obtained
estimates p satisfy the order constraints: p is decreasing within each row and increasing within
each column of the table. So, for X3 = 0, the isotonic regression p* equals the basic estimate p.
For X3 = 1 however, the maximum-likelihood estimates obtained from the sample do not satisfy
the constraints imposed by the signs of the influences: we observe that p increases within the first
row and decreases within the second column of the table.

We now compute the isotonic regression p* of the parameter estimates given X3 = 1, by
applying the minimum lower sets algorithm. The algorithm starts with the computation of the
weighted average of the unconstrained estimates p for all lower sets. Table 2 reports the various
lower sets and their associated averages in the subsequent iterations of the algorithm. In the first
iteration, the lower set with minimum weighted average is {(0,1,1),(0,0,1)}, and the algorithm
sets p*(y =110,1,1) =p*(y =110,0,1) = 0.28. After removal of the two elements (0,1,1) and
(0,0,1) from the other sets, the lower sets {(1,1,1)} and {(1,1,1),(1,0,1)} remain, with 0.5 and
0.58 respectively, for their weighted averages. The algorithm sets p*(y = 1| 1,1,1) = 0.5. After
removal of (1,1, 1) from the single remaining set, only the lower set {(1,0,1)} is left. The algorithm
sets p*(y = 1| 1,0,1) = 0.9 and halts since it has exhausted 2(X). The thus computed isotonic
estimates are summarised in table 3. Note that the computed estimates satisfy the constraints
imposed by the signs of the qualitative influences involved: p* does no longer increase within the
first row nor decrease in the second column of the table.

5.3 Zero counts

In practice, a sample of data may include no observations at all for a particular parent configuration
x for the variable Y of interest. In fact, the smaller the data sample, the more likely this situation
is to occur. Disregarding any constraints there may be, the lack of observations means that there
are no data to estimate the parameter p(y = 1 | x) from. In line with common practice, we
then set p(y = 1 | x) = 0.5, that is, we assume a uniform distribution for the variable ¥ given

Table 2: The weighted averages of the unconstrained estimates for the lower sets given X3 =1

Lower Set Avl Av2 Av3

{(0,1,1)} 3/5=0.6 — —
{(0,1,1),(0,0,1)} 7/25 =0.28 — —
{(0,1,1),(1,1,1)} 23/45 = 0.51 20/40 = 0.5 —
{(0,1,1),(0,0,1),(1,1,1)} 27/65=0.42 | 20/40=0.5 -
{(0,1,1),(0,0,1),(1,1,1),(1,0,1)} || 36/75=0.48 | 29/50 =0.58 | 9/10 =0.9




Table 3: The isotonic estimates p* for y = 1, given the parent configurations with X3 =1
X3=1 X,=0 X, =1
X1=0|7/25=0.28 | 7/25=0.28
X;=1] 9/10=0.9 | 20/40 =0.5

x. This estimate may however lead to a violation of the constraints imposed by the signs of
the qualitative influences involved. Whenever it does so, it should be adjusted by the minimum
lower sets algorithm, just like any other estimate that results in such a violation. We can easily
accommodate for a lack of observations for a parent configuration by using a slightly modified
weighted average function within the algorithm:

2.eaw(2)-9(2)
Av(A) = > eaw(2)

0.5 if Y e w(z)=0

As an example we consider the data and associated parameter estimates from table 4. Note that
since there are no observations for the parent configuration (0, 0), we have set p(y =11 0,0) = 0.5.
We assume that the expert has specified positive influences of both X; and X5 on Y. We now
find that the value of p(y = 1| 0,0) violates the order constraints. The lower set with minimum
weighted average is

if Y e w(z) >0

AV({(0,0),0,1))) = F22 T — 04

The minimum lower sets algorithm thus yields p*(y =1 0,0) = p*(y = 1| 0,1) = 0.4. Note that
any value for p*(y =11 0,0) in the interval [0,0.4] is equally good as far as the data and specified
constraints are concerned.

5.4 Estimation with complete order

So far we have assumed that the signs that are specified by experts for the qualitative influences
on a specific variable, impose a partial order on its parent configurations. In some cases, however,
an expert can indicate a total order. In these cases, the pool adjacent violators algorithm can be
used to obtain order-constrained maximum-likelihood parameter estimates. As an example, we
consider a variable with three parents. We suppose that the expert has specified the following
total order on the parent configurations:

(0,0,0) < (0,0,1) = (0,1,0) = (1,0,0) < (0,1,1) < (1,0,1) < (1,1,0) = (1,1,1)

Table 4: An example with no observations for the parent configuration (0, 0)

X1 X2 ’I’L(Xl,XQ) n(Y = 1,X1,X2) ﬁ(y =1 | Xl,XQ)
0 0 0 0 0.5

0 1 10 4 0.4

1 0 20 9 0.45

1 1 20 16 0.8




We further suppose that we have the following data:

p = (0.1,0.05,0.2,0.4,0.35,0.5,0.7, 0.8)
n = (10, 20, 20, 10, 20, 30, 30, 10)

The vector of estimates includes two violations of the specified order; these are between elements
one and two, and between elements four and five. These violations are resolved by the PAV
algorithm by averaging the elements:

p* = (0.067,0.067,0.2,0.37,0.37,0.5,0.7,0.8)

Since it requires much less computational effort than the minimum lower sets algorithm, exploiting
the PAV algorithm whenever a total order is available, may drastically reduce the overall runtime
of learning a network’s parameters.

5.5 Bayesian estimation

The parameter-learning method described above does not require that an expert specifies numerical
values for the parameters concerned: he only has to provide signs for the various influences. If the
expert would be able to provide uncertain prior knowledge about the numerical values in addition
to these signs, then this knowledge is readily accommodated in a Bayesian approach to constrained
parameter estimation.

Suppose that the expert has specified Beta priors for the parameters p(y = 1 | x). We assume
that he has chosen the hyperparameters a(x) and b(x) for these priors given x in such a way
that his experience is equivalent to having seen the value y = 1 a total of a(x) — 1 times in
h(x) = a(x) + b(x) — 2 observations of x; h is called the precision of the specified prior given
x. Now, let po(y = 1 | x) denote the modal value of the Beta prior for p(y = 1 | x), that is,
po(y = 1| x) is a priori considered the most likely value of the parameter p(y = 1 | x). We suppose
that the expert’s values for a(x) and b(x) are such that the modes po(y = 1 | x) = (a(x) —1)/h(x)
are isotonic with respect to the order imposed by the signs that he has specified. In forming the
joint prior for the parameters, we now assume local independence [13], except for the constraint
that the parameter values must be isotonic. The joint prior thus equals 0 for non-isotonic value
combinations for the parameters and is proportional to the product Beta distribution for isotonic
combinations. The constrained MAP estimates given the data D then are given by the isotonic
regression of
nx)-ply=1[%) +hx)-po(y =1[%)

n(x) + h(x)

with weights n(x) 4+ h(x) [14]. Order-constrained estimation thus again amounts to performing
isotonic regression on basic estimates with appropriately chosen weights. The unconstrained MAP
estimates po(y = 1 | x, D) for the various parameters are taken for the basic estimates. The weights
for these estimates are n(x) + h(x), that is, for a parent configuration x, the weight is taken to be
the sum of the number of actual observations for x and the precision h(x) specified for his prior
estimate by the expert. Note that if the expert has specified a flat prior Beta(1,1) with A = 0,
then the order-constrained maximum-likelihood estimates are returned.

As an example, we consider again the network fragment from figure 2 and the data from table 1.
We suppose that the expert has specified the following Beta priors for the various parameters
given X3 = 1: p(y =110,0,1) ~ Beta(5,7), p(y =11 1,0,1) ~ Beta(9,3), p(ly =1 0,1,1) ~
Beta(2,5), and p(y = 1 | 1,1,1) ~ Beta(3,4). The modes corresponding with these priors are
given in table 5 on the left. Note that the prior modes are consistent with the order implied by
the signs that have been specified by the expert. Combination with the observed data results in
the posterior modes given in table 5 on the right. We find that these posterior modes no longer
satisfy the order constraints, as they are increasing in the first row. Application of the minimum
lower sets algorithm resolves the violation by averaging the posterior modes over the first row to
obtain p§(y =110,0,1) =pi(y =1/0,1,1) = 12/40 = 0.3.

Po(y: 1 ‘ X,D) =

10



Table 5: Prior (left) and posterior (right) modes of the Beta distributions for the example
X5 =1 X =0 Xo=1][Xs=1 X, =0 X, =1
X, =0]|4/10=04 | 1/5=02 || X1 =0 8/30=027| 4/10=04
X;=1|8/10=08 | 2/5=04 || Xy =1 | 17/20 = 0.85 | 22/45 = 0.49

6 Complexity of the Minimum Lower Sets Algorithm

The dominant factor in the runtime complexity of the minimum lower sets algorithm is the number
of lower sets involved. To address this number, we observe that for k£ binary parents, each element
of Q(X) is uniquely determined by the parents that have the value 1, that is, by a subset of
{1,2,...,k}. The partial order that is imposed on (X) by positive influences of all parents
therefore, is isomorphic to the partial order generated by set inclusion on P({1,2,...,k}). Every
lower set of Q(X) now corresponds uniquely to an antichain in this partial order. The number
of distinct lower sets of (X) thus equals the number of distinct nonempty antichains of subsets
of a k-set, which adheres to Sloane sequence A014466 [15]. Table 6 gives the number of distinct
lower sets for different numbers of parents under the assumption that each parent exerts a signed
influence on the variable for which we want to compute parameter estimates. From the table,
we note that the minimum lower sets algorithm is feasible only for up to five or six parents with
signed influences.

From our example network fragment, we have noted that unsigned influences serve to partition
the set of parent configurations 2(X) into disjoint subsets, such that no element of the one subset
is order related to any element of the other subsets. We have argued that constrained estimates
may be computed for these subsets separately, thereby effectively decomposing the parameter-
learning problem into a number of independent smaller problems. This decomposition yields a
considerable improvement of the overall runtime involved. Let ki denote the number of parents
with a signed influence and let ko denote the number of parents with an unsigned influence. The
number of configurations for the parents with an unsigned influence equals 2¥2. The order graph
therefore has 2%2 separate components. If we would not exploit the problem’s decomposition, the
algorithm would have to establish the weighted average of

L(ky + k2)| = (|£(k)| +1)% — 1

lower sets, since a lower set of the entire set of parent configurations 2(X) is constructed by
arbitrarily combining lower sets of the 2*2 subsets induced by the unsigned influences. By treating
each of these subsets as a separate problem, the algorithm initially has to compute the weighted
average of

£ (ks + )| = 2% - |£(Fkn)

Table 6: The number of lower sets (|£]) as a function of the number of parents with a signed
influence (k)

R ]
1 2 2
2 4 5
3 8 19
4 16 167
5 32 7580
6 64 7828353
7 128 | 2414682040997
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lower sets. For k1 = 4 and ky = 3, for example, the algorithm needs to compute the weighted
average of 168% — 1 = 6.35 - 10!7 lower sets for the non-decomposed problem and 8 - 167 = 1336
lower sets for the decomposed problem.

7 Experimental Results

To study the behaviour of the isotonic estimator in a more involved setting, we compare it to the
standard maximum-likelihood estimator on the Brain Tumour network introduced in section 3;
the network and its associated qualitative influences are depicted in figure 1. For the network,
we specified two sets of parameter probabilities; the resulting models will be referred to as Model
A and Model B respectively. The parameter probabilities for Model A are as follows (those for
Model B are given between parentheses):

puc(l) = .2(.4)

porp(1|1) =.95(.75) pora(1]0) =.1(.25)
pB\MC(l | 1) =.2(.3) pB\MC(l | 0) =.05(.15)
psuB(1|1)=.8(.7) psu|B(1|0)=.6(.6)
prscimc(l ] 1) = 8(.75) prscimc(1]0) = .2(.25)
poiB.sc(l]1,1) = 8(.7) poiB,isc(1]0,1) = 8(.7)
poiB.sc(l]1,0) = 8(.7) poiB,isc(1]0,0) =.05(.3)

Note that for model B we have chosen less extreme probabilities, that is, closer to 0.5, than
for Model A. We drew samples of different sizes, n = 50,150, 500, 1500, from the two models,
using logic sampling; for each sample size, 100 samples were drawn. From each sample, both the
standard maximum-likelihood estimates and the constrained estimates of the various parameters
were calculated; for this purpose, the minimum lower sets algorithm as well as an algorithm
for efficiently generating the lower sets [16], were implemented in Splus. Given the computed
parameter estimates, the joint distribution defined by the resulting network was established. This
distribution then was compared to the true joint distribution defined by the original network. To
compare the true and estimated distributions we used the well-known Kullback-Leibler divergence.
The Kullback-Leibler divergence of Pr’ from Pr is defined as

L(Pr, Pr Z Pr(x (();))

where a term in the sum is taken to be 0 if Pr(x) = 0, and infinity whenever Pr'(x) = 0 and
Pr(x) > 0. The results are summarised in table 7. The columns labeled KL < oo indicate for how
many samples the KL divergence was smaller than infinity for both the maximum-likelihood and
the isotonic estimator; the reported numbers are averages over these samples.

The results reveal that the isotonic estimator scores better than the standard maximum-
likelihood estimator, although the differences are rather small. For the smaller samples the dif-
ferences are more marked than for the larger samples. This finding conforms to our expectations,
since for smaller samples the maximum-likelihood estimator has a higher probability of yielding
estimates that violate the constraints. For larger samples, the standard estimator and the isotonic
estimator are expected to often result in the same estimates.

To illustrate the benefits of our isotonic estimator in terms of acceptance of the resulting
network, we consider again the counterintuitive example from section 3. The data in that example
included two patients who both had a brain tumour and an increased level of serum calcium. Since
one of these patients fell into a coma, the maximume-likelihood estimator set the probability that
a patient with this combination of symptoms falls into a coma to 0.5, that is, po|p,rsc(1]1,1) =
5 = 0.5. With peip r5c(1]0,1) = 37 = 0.929, this estimate violates the constraint that originates
from the positive influence of B on C’ The isotonic estimator therefore pools the two estimates
to obtain pg 5 15011 1,1) = pgyp rse(l ] 0,1) = 1% = 0.875. The counterintuitive behaviour
resulting from the basic estimates has thus been eliminated.
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Table 7: Results of the experiments with the Brain Tumour network

Model A Model B
n KL(Pr,Pr) | KL(Pr,Pr*) | KL < oo | KL(Pr,Pr) | KL(Pr,Pr*) | KL < 00
50 0.13 0.11 21013 0.12 61
150 | 0.033 0.030 17 | 0.048 0.044 97
500 | 0.013 0.011 83 | 0.013 0.012 100
1500 | 0.0045 0.0043 100 | 0.0043 0.0041 100

We observe that the order-constrained estimates yielded by the isotonic estimator imply that
the probability of falling into a coma for a patient with an increased serum calcium level equals
87.5% regardless of whether or not he has a brain tumour. Although these estimates are an
improvement over the basic estimates, they may still not be entirely satisfactory. The estimates
nevertheless satisfy the specified qualitative knowledge. If we want to enforce a strict increase of
the probability of falling into a coma for a patient with a brain tumour compared to that for a
patient without a brain tumour, then the expert will have to specify some minimum numerical
difference between the two probabilities. As an illustration, we suppose that the expert specifies,
in addition to the two positive influences, the following minimum difference:

peiB,rsc(1]1,1) = peiprsc(10,1) > 0.1
The order-constrained estimates given all available knowledge now are

Peprsc(l|1,1) =0.914 Peiprsc(110,1) =0.814
p*C\B,ISC(]‘ | ]‘70) =05 png,Isc(l ‘ 0,0) = 0.031

Note that the difference between the estimates for the violating parameters now equals the spec-
ified minimum difference. Since the minimum lower sets algorithm is no longer applicable when
minimum differences are to be enforced, the above estimates have been computed by numerical
optimization.

A problem with the suggested approach to enforcing differences is that an expert is required to
specify numerical information in addition to qualitative signs. This problem can be alleviated to
some extent by eliciting such information only if necessary, that is, if averaging leads to unwanted
equalities. An alternative approach would be to enforce some predefined minimum difference
between p*(y = 1 | x) and p*(y = 1 | x') whenever there is an arrow from x to x’ in the order
graph. It is questionable however whether such an approach would yield results that are acceptable
to experts in the domain of application.

8 Conclusions and Further Research

We showed that, upon estimating the parameters of a Bayesian network from data, prior knowledge
about the signs of influences can be taken into account by computing order-constrained estimates.
Since these isotonic estimates are consistent with the knowledge specified by experts, the resulting
network is more likely to be accepted in its domain of application than a network with basic
maximum-likelihood estimates. Our experimental results moreover revealed that the isotonic
estimator results in a slightly improved fit of the true distribution. For smaller samples the
improvement will generally be more marked than for larger samples, since smaller samples are
more likely to give rise to maximume-likelihood estimates that violate the order constraints.

We see various challenging directions for further research. It would be interesting, for example,
to investigate whether other types of constraint, such as additive synergies and product synergies,
can be exploited to further improve parameter learning. Another interesting extension of our
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method would be to allow for non-binary variables with linearly-ordered discrete values. An influ-
ence on such a variable is defined in terms of stochastic dominance of the distributions involved,
which in essence also imposes a constraint on the estimates. The use of qualitative influences to
improve parameter learning from incomplete data in our opinion also merits further investigation.
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