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Abstract On 14 July 1998 TRACE observed transverse oscillations of a coronal loop

generated by an external disturbance most probable caused by a solar flare. These

oscillations were interpreted as standing fast kink waves in a magnetic flux tube. Firstly,

in this review we embark on the discussion of the theory of waves and oscillations in

a homogeneous straight magnetic cylinder with the particular emphasis on fast kink

waves. Next, we consider the effects of stratification, loop expansion, loop curvature,

non-circular cross-section, loop shape and magnetic twist.

An important property of observed transverse coronal loop oscillations is their fast

damping. We briefly review the different mechanisms suggested for explaining the rapid

damping phenomenon. After that we concentrate on damping due to resonant absorp-

tion. We describe the latest analytical results obtained with the use of thin transitional

layer approximation, and then compare these results with numerical findings obtained

for arbitrary density variation inside the flux tube.

Very often collective oscillations of an array of coronal magnetic loops are observed.

It is natural to start studying this phenomenon from the system of two coronal loops.

We describe very recent analytical and numerical results of studying collective oscilla-

tions of two parallel homogeneous coronal loops.

The implication of the theoretical results for coronal seismology is briefly discussed.

We describe the estimates of magnetic field magnitude obtained from the observed

fundamental frequency of oscillations, and the estimates of the coronal scale height

obtained using the simultaneous observations of the fundamental frequency and the

frequency of the first overtone of kink oscillations.

In the last part of the review we summarise the most outstanding and acute prob-

lems in the theory of the coronal loop transverse oscillations.
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1 Introduction

On 14 July 1998 TRACE observed a spectacular phenomenon in the solar corona. A

coronal magnetic loop started to oscillate in the transverse direction after having been

hit by a disturbance most probably caused by a solar flare. This observation was re-

ported by Aschwanden et al. (1999) and Nakariakov et al. (1999), and interpreted as

standing fast kink wave in a magnetic flux tube. It was also pointed out by Nakari-

akov et al. (1999) that the oscillation was strongly damped with the characteristic

damping time of a few oscillation periods. Later, similar observations were reported

by, e.g., Schrijver and Brown (2000); Aschwanden et al. (2002); Schrijver et al. (2002);

Aschwanden (2006).

After this first observation the transverse oscillations of coronal loops received am-

ple attention from theorists. In the first theoretical studies the simplest model of a coro-

nal magnetic loop was used. In this model a coronal loop is represented by a straight

homogeneous magnetic cylinder with the magnetic field lines frozen in the dense pho-

tospheric plasma at the foot points. Then more sophisticated models were developed.

These models take into account such effects as the density variation along and across

the loop, the loop curvature, the loop non-circular cross-section, the variation of the

loop radius along the loop, and the twist of the magnetic field lines.

In spite of great progress made in the theoretical study of transverse coronal loop

oscillations, there are still many outstanding problems in this area of solar physics.

In this review we describe the state-of-the art in the theory of transverse coronal

loop oscillations and discuss problems that should be solved to make the theory more

complete and applicable to the reality. The paper is organised as follows. In the next

section we briefly outline the theory of waves in straight homogeneous magnetic tubes.

In Sect. 3 we describe the method of studying transverse coronal loop oscillations based

on the use of asymptotic expansions. In Sect. 4 we consider the effect of variation of the

density and loop radius along the loop. In Sect. 5 we study kink oscillations of twisted

magnetic tubes. In Sect. 6 we briefly discuss the effect of the loop curvature. In Sect. 7

we consider kink oscillations of loops with the elliptic cross-sections. In Sect. 8 we study

the kink oscillations of a magnetic tube that consists of a core cylinder surrounded with

a cylindrical annulus, the plasma densities being different in the cylinder and annulus.

In Sect. 9 we consider the collective oscillations of two straight homogeneous parallel

coronal loops. In Sect. 10 we describe the damping mechanisms of kink oscillations.

In Sect. 11 the application of the theory of kink oscillations to coronal seismology is

reviewed. Finally, in Sect. 12 we conclude and discuss outstanding problems in the

theory of coronal loop transverse oscillations. In this review we do not consider the

excitation mechanisms of the coronal loop transverse oscillations. These mechanisms

are described in the review by Terradas (2009) in this issue.

2 Eigenmodes of straight homogeneous magnetic tubes

The eigenmodes of straight homogeneous magnetic tubes have been studied by many

authors. One of the most complete investigations of these eigenmodes is given in Edwin

and Roberts (1983) (see also the review papers by Aschwanden (2006); Roberts and

Nakariakov (2003); Nakariakov and Verwichte (2005); Erdélyi (2008)). In this section

we give a very brief review of the properties of these eigenmodes. The starting point
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of our analysis is the linearised system of ideal MHD equations,

ρ = −∇ · (ρ0ξ), (1)

ρ0
∂2ξ

∂t2
= −∇P +

1

µ0

(B0 · ∇)b +
1

µ0

(b · ∇)B0, (2)

b = ∇× (ξ × B0), (3)

p− C2
Sρ = ξ · (C2

S∇ρ0 −∇p0). (4)

Here ρ0, p0 and B0 are the background density, plasma pressure and magnetic field.

The background state is assumed to be static, so that all the background quantities are

independent of time, and the background velocity is zero. The quantities ρ, p and b are

the perturbations of the density, plasma pressure and magnetic field; ξ is the plasma

displacement; P = p+ B0 · b/µ0 is the perturbation of the total pressure (plasma plus

magnetic); µ0 is the magnetic permeability of empty space and C2
S = γp0/ρ0 is the

square of the sound speed, γ being the ratio of specific heats.

a

r

z

ϕ

B B

ρ ,

ρ ,

p

p
e 0

e e

0 0

Fig. 1 The background state consisting of an infinite magnetic tube.

In what follows we consider the background state in the form of an infinite magnetic

tube (see Fig. 1). In this background state all the background quantities are constant

inside and outside the infinite cylinder of radius a, while, in general, they have jumps

across the cylinder boundary. The magnetic field is parallel to the cylinder axis. In what

follows we retain the subscript ‘0’ for the background quantities inside the cylinder,

while we use the subscript ‘e’ to indicate the background quantities in the surrounding

plasma. The total background pressure has to be continuous at the tube boundary,

p0 +
B2

0

2µ0

= pe +
B2

e

2µ0

. (5)
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In our analysis we use cylindrical coordinates r, ϕ, z and introduce the correspond-

ing components of the displacement and magnetic field perturbation, ξ = (ξr, ξϕ, ξz)

and b = (br, bϕ, bz).

In what follows we consider only trapped waves and neglect leaky waves. This

means that the perturbations have to decay far from the cylinder, i.e. when r → ∞. At

the cylinder boundary the normal component of the displacement and the perturbation

of the total pressure have to be continuous,

ξr0 = ξre, P0 = Pe. (6)

It is straightforward to transform the system of Eqs. (1)-(4) to the form

∂4P

∂t4
−
`

C2
S + V 2

A

´

∇2 ∂
2P

∂t2
+ C2

SV
2
A∇2 ∂

2P

∂z2
= 0, (7)

∂2ξr
∂t2

− V 2
A
∂2ξr
∂z2

= − 1

ρ0

∂P

∂r
, (8)

∂2ξϕ
∂t2

− V 2
A
∂2ξϕ
∂z2

= − 1

rρ0

∂P

∂ϕ
, (9)

∂2ξz
∂t2

− C2
T
∂2ξz
∂z2

= − C2
T

ρ0V
2
A

∂P

∂z
, (10)

br = B0

∂ξr
∂z

, bϕ = B0

∂ξϕ
∂z

, bz = −B0

r

„

∂(rξr)

∂r
+
∂ξϕ
∂ϕ

«

, (11)

ρ = −ρ0
„

1

r

∂(rξr)

∂r
+

1

r

∂ξϕ
∂ϕ

+
∂ξz
∂z

«

, p = C2
Sρ, (12)

where the squares of the Alfvén and tube speeds are given by

V 2
A =

B2
0

µ0ρ0
, C2

T =
C2

SV
2
A

C2
S + V 2

A

, (13)

and ∇2 is the Laplacian given in cylindrical coordinates by

∇2 =
1

r

∂

∂r
r
∂

∂r
+

1

r2
∂2

∂ϕ2
+

∂2

∂z2
. (14)

Now we Fourier-analyse the perturbations of all quantities and look for solutions in

the form of eigenmodes. This means that we take all dependent variables in Eqs. (7)-

(12) proportional to exp[i(−ωt + mϕ + kz)], where m is integer. Then the system of

Eqs. (7)-(12) reduces to

d2P

dr2
+

1

r

dP

dr
−
„

Λ2 +
m2

r2

«

P = 0, (15)

(ω2 − V 2
Ak

2)ξr =
1

ρ0

dP

dr
, (16)

(ω2 − V 2
Ak

2)ξϕ =
imP

rρ0
, (17)

(ω2 − C2
T k

2)ξz =
iC2

T kP

ρ0V 2
A

, (18)
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br = iB0kξr, bϕ = iB0kξϕ, bz = −B0

r

„

d(rξr)

dr
+ imξϕ

«

, (19)

ρ = −ρ0
„

1

r

d(rξr)

dr
+
im

r
ξϕ + ikξz

«

, p = C2
Sρ, (20)

where

Λ2 =
(C2

Sk
2 − ω2)(V 2

Ak
2 − ω2)

(C2
S + V 2

A)(C2
T k

2 − ω2)
. (21)

When m = 0, there is one special solution to the system of Eqs. (15)-(20). In this

solution, inside the cylinder, only ξϕ and bϕ are non-zero, while ξr = ξz = br = bz =

P = ρ = p = 0; ξϕ is an arbitrary function of r, and bϕ = iB0kξϕ. The external plasma

is not perturbed. It is straightforward to see that the boundary conditions (6) are sat-

isfied automatically. This solution describes the torsional Alfvén wave. Recently the

observation of this wave was reported by Jess et al. (2009). It follows from Eq. (17) that

the phase speed of this wave is equal to VA0. This is the only solution to Eqs. (15)-(20)

with ω2 = V 2
A0k

2. We also can consider a similar solution that describes perturbations

in the external plasma, while the plasma inside the cylinder is not perturbed. It de-

scribes the torsional Alfvén wave with the phase speed equal to VAe. This is the only

solution to Eqs. (15)-(20) with ω2 = V 2
Aek

2.

Now we assume that ω2 6= V 2
A0,ek

2. The restriction that we only consider trapped

waves, i.e. waves evanescent in the external plasma, is equivalent to Λ2
e > 0. It follows

from the condition ω2 6= V 2
A0,ek

2 that there are no non-trivial solutions to Eqs. (15)-

(20) with P = 0. Equation (15) is the modified Bessel equation. Its solution vanishing

as r → ∞ is given by Pe = AeKm(Λer), where Km is the modified Bessel function of

the second kind (McDonald function), and Ae is an arbitrary constant. The solution

of Eq. (15), regular at r = 0, is P0 = A0Im(Λ0r), where Im is the modified Bessel

function of the first kind, and A0 is an arbitrary constant.

While Λ2
e > 0, Λ2

0 can have any sign. A wave mode is called a surface wave when

Λ2
0 > 0, and a body wave when Λ2

0 < 0 (see, e.g., Roberts (1981)). In the latter case

Λ0 = i|Λ0| and Im(Λ0r) = imJm(|Λ0|r), where Jm is the Bessel function.

It follows from Eqs. (16) that

ξr0 =
A0Λ0I

′
m(Λ0r)

ρ0(ω2 − V 2
A0
k2)

, ξre =
AeΛeK

′
m(Λer)

ρe(ω2 − V 2
Aek

2)
,

where the prime indicates the derivative. Substituting the expressions for P0,e and ξ0,e

in the boundary conditions (6) we obtain a system of two linear homogeneous algebraic

equations for A0 and Ae. This system possesses a non-trivial solution only when its

determinant is equal to zero. This condition gives the dispersion equation determining

the dependence of ω on k,

ρ0(V
2
A0k

2 − ω2)Λe
K′

m(Λea)

Km(Λea)
= ρe(V

2
Aek

2 − ω2)Λ0

I ′m(Λ0a)

Im(Λ0a)
. (22)

This equation is valid both when Λ2
0 > 0 as well as when Λ2

0 < 0. However, in the latter

case we have to deal with complex quantities. To avoid this it is better to transform

Eq. (22) to

ρ0(V
2
A0k

2 − ω2)Λe
K′

m(Λea)

Km(Λea)
= ρe(V

2
Aek

2 − ω2)|Λ0|
J ′

m(|Λ0|a)
Jm(|Λ0|a)

. (23)
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The properties of the dispersion equations (22) and (23) depend very much on the

relations between the quantities VA0, CS0, VAe and CSe. Since we are mainly interested

in waves in the corona, we consider the relations typical for the coronal conditions.

The corona is strongly dominated by the magnetic field. The plasma pressure in the

corona is much smaller than the magnetic pressure. Then it follows from Eq. (5) that

B0 ≈ Be. The plasma density inside coronal magnetic loops is larger than that in the

surrounding plasma. As a result we obtain that VA0 < VAe. The typical values of the

sound and Alfvén speed in the corona are 100 km/s and 1000 km/s respectively, so

that CS0,e � VA0.

A comprehensive study of waves in a magnetic tube under coronal conditions can be

found in Edwin and Roberts (1983). Here we only present the main results of this study.

In what follows we concentrate on sausage waves (m = 0) and kink waves (m = 1).

The dispersion curves showing the dependence of the phase speed of wave modes on

the wavenumber for sausage and kink waves are shown in Fig. 2.

Fist of all, all waves propagating in a magnetic tube under coronal conditions are

body waves, i.e. Λ0 < 0 for all these waves. All wave modes can be divided in two

classes: fast and slow . The phase speeds of fast modes are in the interval (VA0, VAe),

while the phase speeds of slow modes are in the interval (CT0, CS0).

It is clear from Fig. 2 that all fast sausage modes have a low wavenumber cut-off.

Since the cut-off wavenumber for any fast sausage mode is of the order or larger than

a−1, it follows that only fast sausage waves with the wavelength of the order of or

smaller than the tube radius can propagate in the tube.

Fast kink modes starting from the second one have the same properties as the fast

sausage modes. However the properties of the first kink mode are completely different.

It exists for any value of k. In the long-wavelength approximation its phase speed is

equal to the kink speed give by

Ck =

 

ρ0V
2
A0 + ρeV

2
Ae

ρ0 + ρe

!1/2

. (24)

To our knowledge this result was first obtained for a tube in a magnetic-free envi-

ronment by Ryutov and Ryutova (1976). The approximate expression for the phase

velocity of the first fast kink wave is (see Edwin and Roberts (1983))

ω

k
= Ck

(

1 − ρ0ρe(V
2
Ae − V 2

A0)

2C2
k(ρ0 + ρe)2

λ2k2a2K0(λ|k|a)
)

, (25)

where λ = (1 −C2
k/V

2
Ae)

1/2.

We see that the properties of the first fast kink mode are completely different from

those of the other fast body modes. In particular, since the cut-off wavelengths for the

fast body modes are of the order of or smaller than the tube radius, and the length of

a typical coronal magnetic loop is much larger than its radius, all sausage fast modes

and all kink fast modes but the first one can exist in coronal loops only in the form of

very high harmonics with respect to z. On the other hand, the oscillations of coronal

loops corresponding to the first fast kink mode can contain all harmonics with respect

to z, including the fundamental one. To distinguish the first fast kink mode from the

other fast kink modes it was suggested by Ruderman and Roberts (2002) to call it the

global fast kink wave.
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Fig. 2 Typical dependences of mode phase speeds on the wavenumber under coronal condi-
tions (CS0,e � VA0, VA0 < VAe). The slow band is zoomed, and only the first two harmonics
of a mode are shown (lower panel).

Let us now discuss the properties of the slow body waves. Typically the plasma

in coronal loops is hotter than the surrounding plasma, so that CS0 > CSe. Since

VA0 � CS0 in the corona, the difference between CT0 and CS0 is very small, so

that usually CT0 > CSe as well. Then it is straightforward to see that Λ2
e > 0 when

CT0 < ω/k < CS0 and the slow body waves are evanescent in the external plasma.

Since the difference between CT0 and CS0 is very small, the phase speeds of slow

waves only weakly depend on the wavenumber k (see Fig. 2, lower panel). The slow

body waves exist for any value of k. The phase speeds of all slow body waves tend to

CT0 as ak → 0. For more detailed discussion of properties of the slow body waves see,

e.g., Zhugzhda and Goossens (2001).
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The theory of propagating waves in infinite magnetic tubes homogeneous in the

longitudinal direction was extended in many directions. In particular Bennett et al.

(1999) and Erdélyi and Fedun (2006, 2007) studied the wave propagation in twisted

tubes. Mikhalyaev and Solov’ev (2005) and Carter and Erdélyi (2007) investigated

the waves propagating in annular magnetic cylinders with the straight magnetic field

lines. Erdélyi and Carter (2006) and Carter and Erdélyi (2008) considered the wave

propagation in annular magnetic cylinders with the magnetic field lines twisted in the

annulus. We do not discuss these theory extensions here and refer an interested reader

to the original papers.

3 Method of asymptotic expansions

In this section we give another derivation of the dispersion relation for the global fast

kink waves in the long wavelength approximation. Since this dispersion relation has

already been derived in the previous section, it would not make sense to derive it

using another method if it would be restricted to the case of a straight homogeneous

magnetic tube. However the asymptotic method that we describe in this section allows

far going generalisations. In particular, it can be applied to magnetic tubes with the

density and radius varying along the tube, and to the tube with magnetic twist. On

the other hand, this method is the most transparent when it is applied to a straight

homogeneous magnetic tube.

The observed transverse oscillations of coronal loops are standing rather than prop-

agating waves. Of course, in the linear theory of waves in homogeneous magnetic flux

tubes there is not very much difference between the two types of waves. A standing

wave is just a superposition of two propagating waves. However, when a tube is inho-

mogeneous in the longitudinal direction, i.e. when the density and/or tube radius varies

along the tube, the description of standing waves is different from that of propagating

waves. Having the generalisation of the theory for inhomogeneous tubes in mind we

consider standing waves in this section. The equilibrium state together with the per-

turbed tube are shown in Fig. 3. As in the previous section, the tube radius is a, and

the plasma density inside and outside the tube is ρ0 and ρe, respectively.

Our aim is to apply theoretical results to the observed transverse oscillations of

coronal loops. The phase speed of these oscillations is of the other of Alfvén speed.

The plasma pressure in the corona is much smaller than the magnetic pressure. As a

result, the Alfvén speed is much larger than the sound speed. This observation enables

us to use the cold plasma approximation in what follows. Then it follows from the

equilibrium condition (5) that Be = B0 = B.

The tube length is 2L. We assume that the magnetic field lines are frozen in the

dense photospheric plasma at the tube ends. This implies that the plasma displacement

in the direction normal to the equilibrium magnetic field is zero at the tube ends, i.e.

ξr = 0, ξϕ = 0 at z = ±L. (26)

It follows from the last equation in Eq. (11) and Eq. (26) that bz = 0 at z = ±L. Since,

in the cold plasma approximation, P = Bbz/µ0, we obtain that P satisfies the same

boundary condition,

P = 0 at z = ±L. (27)

In our analysis we use Eqs. (7)-(10). Since CS = CT = 0 in the cold plasma

approximation, it follows from Eq. (10) that ξz = 0. Now we look for the solutions
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a

z

r

x

y

ϕ
L

L

Fig. 3 The equilibrium state and the perturbed tube. The dashed lines show the tube in the
equilibrium, while the solid lines show the tube perturbed by the fundamental mode of the
global fast kink wave.

describing the eigenmodes of global fast kink oscillations. In accordance with this we

take all variables proportional to exp[i(−ωt + ϕ)] (i.e. m = 1). Since the equilibrium

quantities are independent of z we also can Fourier-analyse the equations with respect

to z. However, having in mind application to tubes inhomogeneous in the longitudinal

direction, we do not do this and retain the z-dependence.

Now we recall that the coronal magnetic loops are thin structures with the typical

ratio of the transverse size to the length equal to 0.01 ÷ 0.05. This fact enables us

to use ε = a/L � 1 as a small parameter in the asymptotic expansions. In order

to have the same characteristic lengths for the spatial variables in the longitudinal

and transverse direction we introduce the scaled or stretching variable ζ = εz. The

characteristic spatial scale with respect to this variable is εL = a, i.e. it is the same as

the characteristic spatial scale with respect to r. The typical value of the oscillation

frequency is ω = VA/L = ε−1VA/a. This observation implies that we need to introduce

the scaled frequency Ω = ε−1ω. After that Eqs. (7)-(9) reduce to

1

r

∂

∂r

„

r
∂P

∂r

«

− P

r2
+ ε2

 

∂2P

∂ζ2
+
Ω2

V 2
A

!

P = 0, (28)

V 2
A
∂2ξr
∂ζ2

+Ω2ξr =
1

ε2ρ

∂P

∂r
, (29)
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V 2
A
∂2ξϕ
∂ζ2

+Ω2ξϕ =
iP

ε2ρr
. (30)

The system of Eqs. (28)-(30) contains the small parameter ε2. This implies that we can

look for the solution to this systems in the form of asymptotic expansions with respect

to ε2. In what follows we use only the first order approximation, so that we use the

same notation P , ξr and ξϕ for the first terms of expansions of P , ξr and ξϕ in the

power series with respect to ε2.

In the first order approximation Eq. (28) reduces to

1

r

∂

∂r

„

r
∂P

∂r

«

− P

r2
= 0. (31)

The solution to this equation regular at r = 0 and vanishing as r → ∞ is straightfor-

ward:

P =



A0(ζ)r, r < a,

Ae(ζ)r
−1, r > a,

(32)

where A0(ζ) and Ae(ζ) are arbitrary functions satisfying the boundary condition (27),

A0(±εL) = Ae(±εL) = 0. Substituting Eq. (32) in Eq. (29) we obtain two equations,

one valid inside the tube and one outside,

V 2
A0

∂2ξr0

∂ζ2
+Ω2ξr0 =

A0

ε2ρ0
, (33)

V 2
Ae
∂2ξre

∂ζ2
+Ω2ξre = − Ae

ε2ρer2
. (34)

It follows from the second boundary condition in (6) that Ae = a2A0. Now we substi-

tute this results in Eq. (33) and use and Eqs. (33) and (34) at the boundary, i.e. at

r = a. Then it follows from the first boundary condition (6) that ξr0 = ξre and we

arrive at

V 2
A0

∂2ξr0

∂ζ2
+Ω2ξr0 =

A0

ε2ρ0
, V 2

Ae
∂2ξr0

∂ζ2
+Ω2ξr0 = − A0

ε2ρe
. (35)

Eliminating A0 from these equations and returning to the original variables we obtain

d2ξr0

dz2
+
ω2

C2
k

ξr0 = 0, (36)

where the kink speed Ck is given by Eq. (24). The solution to Eq. (36) has to satisfy the

first boundary condition in (26). Equation (36) together with this boundary condition

constitute the Sturm-Liouville problem for the function ξr0(z). In accordance with our

derivation Eq. (36) is only valid at r = a. However, it follows from Eq. (33) that ξr0 is

independent of r, so that Eq. (36) is valid for any r ≤ a. It follows from Eqs. (30) and

(32) that ξϕ0 is also independent of r. Hence, the plasma displacement inside the tube

is independent of r.

The solution to Eq. (36) is given by

ξr0 = q1 cos(ωz/Ck) + q2 sin(ωz/Ck),

where q1 and q2 are arbitrary constants. Substituting this solution in the first boundary

condition in (26) we obtain

ω = Ckkn, kn =
π(n+ 1)

2L
, (n = 0, 1, . . . ). (37)
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Here n = 0 corresponds to the fundamental mode and n > 0 to the nth overtone. In

addition we obtain that q2 = 0 when n is even, so that

ξr0 = q1 cos(knz). (38)

When n is odd we have q1 = 0 and

ξr0 = q2 sin(knz). (39)

Let us now investigate the polarisation of the eigenmodes. Up to now in this section

ξr0 and ξϕ0 were Fourier coefficients in the expansions of the radial and azimuthal

components of the plasma displacement in the Fourier series with respect to t and

ϕ. Now we use this notation for the components of the plasmas displacement in the

physical space. We drop the subscript ‘0’ because we will consider only the plasma

displacement inside the tube. Keeping in mind that both ξr and ξϕ are proportional

either to cos(knz) or to sin(knz), we will drop this multiplier in the expressions for

these quantities. Then, for the kink oscillation, we can write ξr = q(t)eiϕ + q∗(t)e−iϕ,

where the asterisk indicates the complex conjugate. It follows from Eqs. (29) and

(30) that ξϕ = iq(t)eiϕ − iq∗(t)e−iϕ. Since we consider an eigenmode, it follows that

q(t) = q+e
iωt + q−e

−iωt, where ω is given by Eq. (37). Substituting this expression in

the expressions for ξr and ξϕ we eventually arrive at

ξr = A+ cos(ωt+ ϕ+ α+) +A− cos(ωt− ϕ + α−),

ξϕ = −A+ sin(ωt+ ϕ+ α+) +A− sin(ωt− ϕ+ α−),
(40)

where A± and α± are arbitrary constants. Let us introduce the auxiliary Cartesian

coordinates x, y, z. Then

ξx = ξr cosϕ− ξϕ sinϕ = A+ cos(ωt+ α+) +A− cos(ωt+ α−)

= Qx cos(ωt+ αx), (41)

ξy = ξr sinϕ+ ξϕ cosϕ = −A+ sin(ωt+ α+) +A− sin(ωt+ α−)

= Qy cos(ωt+ αy). (42)

The quantities Qx, Qy, αx and αy are expressed in terms of A± and α±. We do not

give these expressions because they are not used in what follows. Since A± and α± are

arbitrary constants, Qx, Qy, αx and αy are also arbitrary constants.

Equations (41) and (42) show that the plasma displacement ξ is independent of r

and ϕ inside the tube, i.e. the tube is oscillating like a solid string. Hence, it is enough

to consider the motion of the tube axis only. In general, Eqs. (41) and (42) describe

elliptically polarised motion, so that each point of the tube axis is moving along an

ellipse in the plane perpendicular to the tube axis. If we take two arbitrary points,

z = z1 and z = z2 on the tube axis, then the corresponding ellipses are similar, i.e.

they have the same ratio of the axes, and the axis directions are also the same, and

only the magnitude of the large axis varies with z. What is also important, at a fixed

moment of time, the displacements of these two points are either parallel or antiparallel

to each other. In particular, they are strictly parallel in the fundamental mode.
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4 Effects of stratification and expansion

The typical height of the apex point of a coronal loop is 100 Mm, which is about twice

larger than the atmospheric scale height in the corona. This means that the plasma

density can vary along the loop by an order of magnitude. Hence, it is important to

study the effect of the density variation on the transverse coronal loop oscillations.

This problem was first addressed by Andries et al. (2005b). These authors expanded

the dependent variables in the generalised Fourier series with respect to the eigenmodes

of the Alfvén operator. Substituting these expansions in the linearised MHD equations

they reduced the problem to evaluation of the eigenvalues of an infinite matrix. The

eigenfrequencies of the stratified coronal loop are equal to the square roots from the

eigenvalues. To solve this problem the authors truncated the infinite matrix and re-

duced it to a finite square matrix. The equation determining the eigenfrequencies is

obtained by equating the determinant of this matrix to zero. Since the elements of

the determinant depend nonlinearly on the eigenfrequency, this approach resulted in a

complicated algebraic equation that had to be solved numerically. The most important

result obtained by Andries et al. (2005b) was that the overtone frequencies of a stratified

magnetic loop are, in general, not multiple of the fundamental frequency. In particular,

the first overtone frequency is smaller than the double fundamental frequency.

The method used by Andries et al. (2005b) is applicable to stratified magnetic loops

with arbitrary ratio of the radius and length. However, as we have already pointed out,

for typical coronal loops, this ratio is very small and can be used as a small parameter.

Dymova and Ruderman (2005) used this fact to develop the asymptotic theory of

oscillations of stratified magnetic loops. Their analysis is almost complete repetition

of the analysis presented in the previous section for homogeneous magnetic tubes. As

a result, they obtain the same equation (36), however with Ck depending on z. The

quantity Ck is still given by equation (24). It depends on z because ρ0 and ρe are

functions of z. The numerical solution of the eigenvalue problem for equation (36)

with Ck = Ck(z) is trivial. In some cases this eigenvalue problem can even be solved

analytically. One such example is given by Dymova and Ruderman (2006a) where the

equation derived by Dymova and Ruderman (2005) was applied to studying the kink

oscillations of stratified coronal loops. In this example the density inside the loop is

given by

ρi(z) =
ρa

[1 − (1 − κ)(z/L)2]2
, (43)

where L is the half-length of the loop, ρa the density at the apex point, ρf the density

at the foot points, and κ =
p

ρa/ρf . The density outside the loop is given by ρe(z) =

χρi(z), where χ < 1 is a constant. In that case the solution of equation (36) with

Ck(z) given by (24) can be found analytically, and the eigenfrequencies of the loop

oscillations are given by

(ωe
0n)2 =

πB2a2
√

1 − κ

µ0ML(1 + χ)

„

2
√

1 − κ

κ
+ ln

1 +
√

1 − κ

1 −
√

1 − κ

«

×
(

π2(2n− 1)2
„

ln
1 +

√
1 − κ

1 −
√

1 − κ

«−2

+ 1

)

, n = 1, 2, . . . , (44)
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for even modes (i.e., the fundamental mode, the second overtone, etc.), and by

(ωo
0n)2 =

πB2a2
√

1 − κ

µ0ML(1 + χ)

„

2
√

1 − κ

κ
+ ln

1 +
√

1 − κ

1 −
√

1 − κ

«

×
(

4π2n2

„

ln
1 +

√
1 − κ

1 −
√

1 − κ

«−2

+ 1

)

, n = 1, 2, . . . , (45)

for odd modes (i.e., the first, third, and so on overtones). In equations (44) and (45)

B is the equilibrium magnetic field and M is the total mass of plasma inside the loop

given by

M = πa2Lρa

„

1

κ
+

1

2
√

1 − κ
ln

1 +
√

1 − κ

1 −
√

1 − κ

«

. (46)

When κ → 1, which corresponds to the limit of a non-stratified loop, we obtain

from equations (44) and (45) the familiar expressions for the eigenfrequencies, ωe
0n =

πCk(2n − 1)/2L and ωo
0n = πCkn/L.

Dymova and Ruderman (2006a) also carried out the calculations of eigenfrequencies

for the same dependence of the density on z as that used by Andries et al. (2005b) and

compared their results with those obtained by Andries et al. (2005b). The difference

in the eigenmode frequencies calculated by the two methods was less than 1% for

a/L . 0.05, so that the accuracy of the asymptotic theory is very good.

Another example of analytical solution of the eigenvalue problem for equation (36)

is given by Verth at al. (2007) who considered a piecewise-constant density profile.

Observations show that the loop radius does not vary very much along the loop.

Still the ratio of the loop radius at the apex point to that at the foot points can

be up to 2 (e.g. ?Verth and Erdélyi (2008)). This corresponds to the increase in the

loop cross-section area up to four times and, in accordance with the magnetic flux

conservation, to the same decrease in the magnetic field magnitude. The increase in

the loop mass due to its expansion and the decrease in the magnetic field magnitude

can substantially affect the eigenfrequencies of the loop oscillations, so that this effect

deserves attention. Transverse oscillations of stratified coronal loops with the variable

cross-section were studied by Verth and Erdélyi (2008) and Ruderman et al. (2008).

Once again only long loops were considered and the asymptotic theory of transverse

oscillations of such loops was developed. While it was assumed by Verth and Erdélyi

(2008) that the expansion factor (the ratio of the loop radii at the apex and foot points)

is small, Ruderman et al. (2008) studied oscillations of loops with arbitrary expansion

factor. The analysis by Ruderman et al. (2008) is much more involved than that in the

previous section of this paper. The reason is as follows. The boundary of an expanding

loop is determined by r = f(z) in cylindrical coordinates. It is inconvenient to solve

MHD equations in a region with the boundary of this form. To avoid this problem

it was noticed that the equilibrium magnetic flux function ψ is constant at the loop

boundary. This function was used as a new independent variable instead of r. In the

new variables the loop boundary is determined by ψ = ψ0 = const. However, the MHD

equations in coordinates ψ, ϕ, z are more complicated than in coordinates r, ϕ, z.

The main result obtained by Ruderman et al. (2008) is the following. The squares of

eigenfrequencies of transverse oscillations of stratified magnetic loops with the variable

cross-sections are the eigenvalues of the Sturm-Liouville problem

dη

dz2
+
ω2

C2
k

η = 0, η = 0 at z = ±L, (47)
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where η = ξr0/a and a = a(z) is the (variable) loop radius. Formally equation (47)

is the same as the equation for stratified loops with constant cross-section. The fact

that it is written for η = ξr0/a(z) affects only the shape of eigenfunctions, but does

not affect the eigenfrequencies. However the properties of eigenfrequencies of loops

with the variable cross-section still can differ very much from those of loops with the

constant cross-section. The reason is that, for loops with the variable cross-section, in

the expression (24) for Ck not only the densities ρi and ρe but also the equilibrium

magnetic field B is a function of z. In accordance with the magnetic flux conservation

B = const/a2(z). In loops with the constant cross-section Ck increases monotonically

with the height in the atmosphere. The most important consequence of this behaviour

is that the ratio of frequencies of the first overtone and the fundamental mode is less

than 2. The behaviour of Ck in loops with the variable cross-section can be much more

complex. As a result the ratio of frequencies of the first overtone and the fundamental

mode can be larger or equal to 2. For example, it is exactly equal to 2 when a4(ρi +

ρe) = const because in this case Ck = const. The implication of this result on coronal

seismology will be discussed in Sect. 11.

A more detailed discussion of transverse oscillations of coronal loop with the density

varying along the loop is guven by Andries et al. (2009).

5 Kink oscillations of twisted tubes

If we assume that the equilibrium magnetic field in a magnetic configuration with a

straight magnetic tube (even with the variable cross-section) is potential (i.e. there is no

electrical current), then we immediately obtain that it is untwisted, i.e. the azimuthal

component of the equilibrium magnetic field is zero. However at present there is no

observational evidence that the coronal loops are current-free. Moreover, it seems that

the observed very low expansion factors of coronal loops (close to unity) give the

evidence in favour of presence of some currents in the coronal loops.

Further, granular shear motion, differential rotation or meridional circulation in the

photosphere can introduce a twist to the flux tubes from pores to sunspots. Erupting

prominences or CMEs, with their footpoints anchored in the dense sub-photosphere,

often appear to have twisted field lines. It is natural and practical to extend the inves-

tigations of MHD wave modes to twisted magnetic flux tubes. These arguments make

studying oscillations of twisted coronal loops topical.

Twisted tubes have been studied before but mainly in terms of stability. In accor-

dance with the Shafranov-Kruskal stability criterion a twisted magnetic tube can be

stable only if the twist is not very strong. In particular, for a long tube, it follows from

this criterion that the tube can be stable only if the ratio of the azimuthal component

of the equilibrium magnetic field, Bϕ, to the magnetic field magnitude is of the order

of or smaller than a/L, Bϕ/B . a/L.

As we have already mentioned in Sect. 1, propagating kink waves in straight twisted

unstratified magnetic tubes were studied by Bennett et al. (1999), Erdélyi and Carter

(2006), Erdélyi and Fedun (2006, 2007) and Carter and Erdélyi (2008). A sketch of the

equilibrium state with a twisted magnetic tube is shown in Fig. 4. In the cold plasma

approximation the magnetic field has to satisfy the equilibrium condition inside the

tube,

dB2
i

dr
+

2B2
iϕ

r
= 0, (48)
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where B2
i = B2

iϕ + B2
iz , and the conditions of magnetic pressure balance at the tube

boundary given by Eq. (5) with p0 = pe = 0.

Fig. 4 The equilibrium configuration with a twisted magnetic tube. When the tube is thin
and the Shafranov-Kruskal stability criterion is satisfied, Biz = Bez + O(a2/L2) in the cold
plasma approximation.

There is no difference in studying propagating and standing waves in untwisted

magnetic tubes. A standing wave is obtained by the superposition of two waves with

the same frequencies and wavenumbers propagating in the opposite directions. The

presence of twist brakes the symmetry of wave propagation with respect to the change

of the propagation direction. Hence, in general, a standing wave in a twisted tube

cannot be obtained in the same simple way as in an untwisted tube. It can be shown

that a standing wave is now a superposition of two propagating waves with the same

frequencies but with different wave numbers. Hence, in principle, studying standing

waves in a straight twisted unstratified magnetic tube still can be reduced to studying

propagating waves. However, it is more convenient to study the standing waves directly.

The situation becomes even more complicated when a magnetic tube is stratified.

In this case only the direct study of standing waves is convenient. The standing kink

oscillations of straight twisted stratified magnetic tubes with the constant cross-section

were studied by Ruderman (2007). Once again the investigation was restricted to thin

tubes, a � L. When the tube is thin it follows from Eqs. (5) and (48) that Biz =

Be +O(a2/L2). The asymptotic analysis similar to one described in Sect. 3 was carried
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out. This analysis has shown that, under the assumption Bϕ/B . a/L, the kink

oscillations are described by the same Sturm-Liouville problem as those in a non-

twisted tube. Hence, a week twist can only result in corrections to the eigenvalues and

eigenfrequencies that are smaller than or of the order of (a/L)2. Such corrections are

negligible in applications to the coronal magnetic loops.

6 The effect of curvature

In all models that we discussed up to now magnetic tubes were assumed to be straight.

However, real coronal magnetic loops are curved. What is the effect of this curvature

on the kink oscillations? This problem was first addressed by Van Doorsselaere et al.

(2004b). These authors considered a model of a coronal loop that has the shape of

a half-torus. They neglected the density stratification. Using the toroidal coordinates

they solved this problem analytically in the thin tube approximation. The main results

obtained in this study can be summarised as follows. The kink modes of a straight

tube with a circular cross-section are degenerate in a sense that they can be polarised

in any direction. In contrast, the kink eigenmodes of a curved tube can be polarised

either in the plane of the tube (vertical oscillations), on in the direction perpendicular

to the plane of the tube (horizontal oscillations). The frequencies of the two kink modes

polarised in the mutually orthogonal directions are different. However the difference

between these two frequencies is of the order of (a/L)2, i.e. it is very small for coronal

magnetic loops. Recently we were informed by the authors that they found an error

in their analysis, and now they are preparing a corrected version of their paper. How-

ever, to our knowledge, this error does not affect the main conclusion made by Van

Doorsselaere et al. (2004b).

Terradas et al. (2006) studied the same problem numerically taking the density

stratification into account. They obtain the results similar to those obtained by Van

Doorsselaere et al. (2004b). More detailed discussion of the curvature effect can be

found in the review paper by Van Doorsselaere et al. (2009) in this issue.

It is worth noting that the majority of the observed transverse oscillations of coronal

magnetic loops are horizontally polarised. However Wang and Solanki (2004) reported

the observations by TRACE of the vertically polarised oscillations of coronal loops (see

also Wang et al. (2008)).

7 Kink oscillations of coronal loops with non-circular cross-section

It was assumed in the majority of theoretical studies that coronal loops have circular

cross-sections. However, at present there are no observational evidences that this is

correct. Measuring the parameters of the loop cross-section demands observations with

a very high resolution not available at present. For correct interpretation of observa-

tional data we need robust models that do not change very much when assumptions

used to develop these models are relaxed. From this point of view it is very important

to investigate how much the theoretical results concerning the kink coronal loop os-

cillations depend on the assumption that the loop cross-section is circular. The first

insight in this problem was made by Ruderman (2003) who studied the kink oscilla-

tions of a homogeneous magnetic tube with the elliptic cross-section. It was shown

that, in the cold plasma approximation, there are two fast kink modes polarised along
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the small and large axis of the elliptic cross-section. In the thin tube approximation

the frequencies of these modes are given by

ω2
k1 =

ρV 2
Ak

2(a+ b)

bρi + aρe
, ω2

k2 =
ρV 2

Ak
2(a+ b)

aρi + bρe
. (49)

Here a and b are the large and small half-axes of the elliptic cross-section, k = π/L and

L is the loop length. The frequencies ωk1 and ωk2 correspond to oscillations polarised

along the small and large axes. Note that ωk2 < ωk1. When a = b, ωk1 = ωk2 = ωk.

The two fundamental kink modes of a tube with the elliptic cross-section are shown in

Fig. 5.

Recently the eigenmodes of a homogeneous magnetic tube with the elliptic cross-

section were studied in a plasma with the finite pressure by Erdélyi and Morton (2009).

Since the account of finite pressure is mainly important for sausage modes and practi-

cally does not affect the fast kink modes we do not discuss in detail the results of this

study here, and only reproduce their figure showing the dispersion curves of different

modes for the values of parameters relevant for the solar corona. In Figure 6 the dis-

persion curves marked as “kinkm (1st branch)” and “kinkM (1st branch)” correspond

to the fast global kink modes polarised along the small and large axes of the elliptic

cross-section respectively. In the limit ak → 0 their frequencies are equal to ωk1 and

ωk2. Note that the slow modes do not exist in the cold plasma approximation.

Fig. 5 Sketch showing the equilibrium (bold solid and dashed lines) and perturbed states
(thin dashed lines) of a magnetic flux tube with plasma density ρi embedded in plasma with
density ρe. The left hand sketch shows the kink perturbation polarised along the large axis of
the elliptic cross-section, and the right one shows the kink perturbation polarised along the
small axis. The plane in which the kink modes are polarised is shown.
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Fig. 6 The dispersion curves for waves propagating in a tube with the elliptic cross-section.
The dispersion curves marked as “kinkm (1st branch)” and “kinkM (1st branch)” correspond
to the fast global kink modes polarised along the small and large axes of the elliptic cross-
section respectively. The lower part of the figure shows the magnified dispersion curves for flow
modes. Note that these modes do not exist in the cold plasma approximation.

8 Kink oscillations in annular magnetic cylinders

Sub-resolution flux tube structure is still a matter of speculations. It is anticipated that

the recently launched Hinode/SOT may advance the research on the internal structure

of solar magnetic flux tubes. As a specific example, let as recall an interesting earlier

observation by Robbrecht et al. (2001): combined data of May 13 1998 from both the
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EIT instrument on SOHO and from TRACE show the simultaneous observation of

two slow magnetosonic waves propagating along a perceived coronal loop with speeds

of 95 and 110 km/s. This observation was interpreted by the authors as temperature

differences within the observed loop hinting at a substructure of perhaps either concen-

tric shells of different temperatures or of thin strands within the same loop at different

temperatures. There is no conclusive proof disputing these possible flux tube structures

nor preference given towards one in particular.

In this section we consider the wave propagation in a core magnetic cylinder sur-

rounded by a concentric shell. Such a magnetic plasma configuration can be called an

annular magnetic cylinder. The geometry of the model is shown in Fig. 7. The magnetic

field is in the direction of the cylinder axis and its magnitude is Bi in the core cylinder,

B0 in the annulus, and Be in the external plasma. The plasma densities in these three

regions are ρi, ρ0 and ρe respectively, and we assume that ρi, ρ0 > ρe.

a

R

B i B0 Be

Fig. 7 The equilibrium configuration of a magnetic cylinder consisting of a core, annulus and
external regions, all with straight magnetic field.

At present only the propagating waves in annular magnetic cylinders were stud-

ied. But, since in magnetic plasma configurations with straight magnetic field lines

a standing wave is a superposition of two propagating waves with the same frequen-

cies and opposite wavenumbers, it is straightforward to apply the results of this study

to kink oscillations of annular magnetic cylinders. The propagating waves in annular

magnetic cylinders were studied by Carter and Erdélyi (2007) in the approximation of

incompressible plasma, while Mikhalyaev and Solov’ev (2005) took the plasma com-

pressibility into account. Since the cold plasma approximation is quite suitable for the

description of the fast kink oscillations of coronal loops, in what follows we use the

results obtained by Mikhalyaev and Solov’ev (2005).

One of the consequences of the cold plasma approximation is that the magnetic

field magnitude is the same in the core cylinder, the annulus and the external plasma,

so that Bi = B0 = Be = B. Mikhalyaev and Solov’ev (2005) derived the dispersion

equation for the fast kink modes in the thin tube approximation. In the cold plasma
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approximation this dispersion equation reduces to

h

R2(ρ0 + ρi)(ρ0 + ρe) − a2(ρ0 − ρi)(ρ0 − ρe)
i

ω4

− 2

µ0

R2B2k2(2ρ0 + ρi + ρe)ω
2 +

4

µ2
0

R2B4k4 = 0, (50)

where k is the wavenumber in the longitudinal direction. For the fundamental mode

k = π/L, where L is the length of the annulus cylinder. The solutions to the dispersion

equation (50) are

ω2
± = V 2

Aik
2R

»

(1 + 2χ0 + χe)R ±
q

(1 − χe)2(R2 − a2) + (1 − 2χ0 + χe)2a2

–

×
h

(1 + χ0)(χ0 + χe)R
2 + (1 − χ0)(χ0 − χe)a

2
i−1

, (51)

where

V 2
Ai =

B2

µ0ρi
, χ0 =

ρ0
ρi
, χe =

ρe

ρi
.

When 2χ0 < 1 + χe, in the wave mode with the oscillation frequency ω− the core

cylinder and the annulus oscillate in phase. We will call this mode the phase mode

in what follows. The displacement of the core cylinder and the annulus in this wave

mode are schematically shown on the left panel of Fig. 8. When a = R, i.e. there

is no annulus, ω− = ωk and this wave mode becomes the global fast kink mode of

a homogeneous tube. In the wave mode with the oscillation frequency ω+ the core

cylinder and the annulus oscillate in antiphase. We will call this mode the antiphase

mode in what follows. The displacement of the core cylinder and the annulus in this

wave mode are schematically shown on the right panel of Fig. 8. When a = R, i.e.

there is no annulus, this wave mode does not exist.

When 2χ0 > 1 + χe, the situation is reversed. Now the antiphase mode has the

frequency ω−, while the phase mode has the frequency ω+.

It is straightforward to show that ω2
± < V 2

Ae = V 2
Ai/χe, so that both the phase and

antiphase modes are evanescent in the external plasma. When χ0 6= 1, i.e. there is the

annulus, the frequencies ω− and ω+ satisfy the inequalities

kmin(VAi, VA0) < ω− < kmax(VAi, VA0), (52)

ω+ > kmax(VAi, VA0). (53)

where V 2
A0 = V 2

Ai/χ0. The inequality (53) implies that the wave mode with the fre-

quency ω+ is a body wave both in the core cylinder and in the annulus. On the other

hand, it follows from the inequality (51) that the wave mode with the frequency ω− is

a body wave in the core cylinder and a surface wave in the annulus when VAi < VA0,

while it is a surface wave in the core cylinder and a body wave in the annulus when

VAi > VA0. Such a wave mode is called mixed .

Let us consider one example relevant for the corona. If we takeR = 2a, χ0 = 0.5 and

χe = 0.1, then ω+/ω− ≈ 0.677. We see that the two frequencies can be substantially

different.
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Fig. 8 The kink modes of the annular cylinder oscillation. The left panel corresponds to the
mode where the core cylinder and the annulus oscillate in phase. In the thin tube approximation
the frequency of this mode is equal to ω

−
when 2ρ0 < ρi + ρe and ω+ when 2ρ0 > ρi + ρe.

The right panel corresponds to the mode where the core cylinder and the annulus oscillate in
antiphase. In the thin tube approximation the frequency of this mode is equal to ω+ when
2ρ0 < ρi + ρe and ω

−
when 2ρ0 > ρi + ρe. The arrows show the plasma displacement.

9 Collective kink oscillations of two parallel coronal loops

Very often it is observed that not a single loop, but a whole array of loops oscillates

after being perturbed by, e.g., a solar flare. Moreover, it has been suggested by, e.g.,

Aschwanden et al. (2000) that the loops as we see them actually consist of a multitude

of individual loop strands. These considerations put on the agenda studying collective

oscillations of an array of coronal loops. A natural first step in this study is the in-

vestigation of collective oscillations of a system of two coronal loops. Recently such an

investigation has been carried out numerically by Luna et al. (2008). These authors

considered oscillations of two identical homogeneous parallel magnetic tubes with fixed

ends. They studied both the eigenmodes of oscillations of this system, and solved the

initial value problem. Their main results concerning the eigenmodes can be summarised

as follows. There are four fundamental eigenmodes of the system oscillation with re-

spect to the longitudinal direction. In two of these four modes the tubes oscillate in

the direction connecting the tube axes, which is denoted as the x-direction, and in

two other modes in the perpendicular direction, which is denoted as the y-direction.

In each of the two pairs of modes the tubes can oscillate either in the same direction,

and in this case they are called symmetric, or in the opposite directions, in which case

they are called antisymmetric. Luna et al. (2008) used the notation Sx, Ax, Sy and Ay

for this modes, where S and A stay for symmetric and antisymmetric respectively, and



22

the subscripts ‘x’ and ‘y’ indicate the mode polarisation (i.e. the direction of the tube

displacement). If we denote the oscillation frequencies of the these four fundamental

modes as ωSx, ωAx, ωSy and ωAy respectively, then they satisfy the following ordering,

ωSx < ωAy < ωSy < ωAx. (54)

When the separation between the tubes increases, all four frequencies tend to the

common kink frequency of the two tubes.

Van Doorsselaere et al. (2008) studied this problem analytically in the thin tube

approximation. In this paper the oscillations of two parallel loops with arbitrary radii

and densities inside them have been considered. The equilibrium configuration is shown

in Fig. 9. The coronal loops are modelled by straight homogeneous magnetic tubes.

The length of the tube is L. The tube radii are RL and RR, and the plasma densities

inside the tubes are ρL and ρR. The density of the plasma outside the tubes is ρe, and

it is assumed that ρL,R > ρe. The distance between the tube axes is d > RL + RR.

The magnetic field is parallel to the tube axes. Since the cold plasma approximation

is used, its magnitude, B, is the same everywhere.

x

z

y

��

��

d
RRRL

~B ρL ρe ρR

Fig. 9 The equilibrium with two parallel homogeneous magnetic tubes.

It was assumed that the transversal size of the system is much smaller than the tube

length. This condition can be written as d/L = ε � 1. Then the solution was found

in the first order approximation with respect to ε. For the analytical solution of the

problem the bi-cylindrical coordinate system was used. When the tubes are identical,

the obtained analytical results are quite similar to the numerical results obtained by

Luna et al. (2008). Once again the four modes, Sx, Ax, Sy and Ay, were identified.

However, there is one difference between the analytical and numerical results. It was

obtained in the analytical investigation that

ω− = ωSx = ωAy < ωSy = ωAx = ω+, (55)
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where

ω2
± =

ρeV
2
Aek

2

(ρL + ρe)(ρR + ρe) − (ρL − ρe)(ρR − ρe)E2

×
n

ρL + ρR + 2ρe ±
q

(ρL − ρR)2 + 4(ρL − ρe)(ρR − ρe)E2

o

. (56)

In this expression the quantity 0 < E < 1 is defined by the geometrical parameters of

the equilibrium state. We do not give the expression for E because otherwise we would

have to present too many details of the mathematical analysis of the problem. This

expression can be found in Van Doorsselaere et al. (2008).

Hence, not four but only two eigenfrequencies have been found in the analytical

study. We attribute this difference between the analytical and numerical results to

the fact that the eigenfrequencies were calculated analytically only in the first order

approximation with respect to ε. Our conjecture is that the frequencies ωSx and ωAy

will split in the next order approximation, and so will ωSy and ωAx.

When the tubes are not identical the properties of the two tube system are more

complicated. In this case, depending on the geometrical and physical parameters of

the system, it can have either standard or anomalous behaviour. The systems with the

standard behaviour have the same eigenmodes as the system of two identical tubes.

However the systems with anomalous behaviour have two eigenmodes of the Ax-type,

and two of Sy-type, while they do not have the Sx and Ay-type modes at all. We

denote the four eigenmodes in this case as Axs, Axf , Sys and Syf . Their frequencies

satisfy

ω− = ωAxs = ωSys < ωSyf = ωAxf = ω+. (57)

The distinctive property of the anomalous systems is that the Alfvén frequency in one

of the two tubes is larger than ω−. In the standard systems the Alfvén frequencies in

both tubes are smaller than ω−.

10 Damping of kink oscillations of coronal loops

The observed kink oscillations are strongly damped. First this was reported by As-

chwanden et al. (1999) and Nakariakov et al. (1999). After that the strong damping

of coronal loop oscillations was confirmed by many observers (e.g. Aschwanden et al.

(2002); Schrijver et al. (2002); Ofman and Aschwanden (2002)). The typical damping

time of oscillations is a few oscillation periods. A few different mechanisms of damping

were suggested (e.g. Roberts (2000)). Among them are the footpoint and side wave

energy leakage, the phase mixing and the resonant absorption. Recently Morton and

Erdélyi (2009) suggested that the observed rapid decrease in the oscillation amplitude

can be caused be the loop cooling.

Simple estimates show that the damping due to the side wave energy leakage can

cause the damping of coronal loop kink oscillations with the characteristic time at least

by two orders of magnitude larger than the observed damping time (e.g. Ruderman

(2005)). The situation with the footpoint leakage is not so clear. We do not know any

accurate investigation of this damping mechanism.

The situation with the phase mixing is very strange. On one hand it was and re-

mains a popular mechanism for explaining the damping of kink oscillations. On the

other hand up to now there is no mathematical model of the damping of kink oscilla-

tions that incorporates this mechanism. From our point of view it is simply irrelevant.
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As for the amplitude decrease due to the loop cooling, this is a very interesting

suggestion, but it needs further investigation, so that we do not discuss it in this

review.

At present the only damping mechanism that has a solid theoretical background is

resonant absorption. It was suggested long ago by Hollweg and Yang (1988) that (that

time hypothetical) kink oscillations of coronal magnetic loops can strongly damp due

to resonant absorption.

After the kink oscillations of coronal magnetic loops were observed and the strong

damping of these oscillations was reported, Ruderman and Roberts (2002) revived this

old idea by Hollweg and Yang. As a model of a coronal magnetic loop they considered

a cylindrical magnetic tube with the density homogeneous in the longitudinal direction

but varying in a thin annulus at the tube boundary. This model is shown in Fig. 10.

The background magnetic field has the constant magnitude and parallel to the z-axis

of cylindrical coordinates r, ϕ, z. It is assumed that the thickness of the annulus, `, is

much smaller than the tube radius, ` � a, and that the background density is given

by

z

B

l a

r

ρ ρi e

ϕ

Fig. 10 A sketch of the equilibrium state, showing a magnetic flux tube with plasma density
ρi embedded in a plasma with density ρe. The equilibrium magnetic field everywhere has
strength B. The equilibrium density varies in the annulus region a − ` < r < a from ρi to ρe.
The dashed lines show the perturbed magnetic tube in its kink mode of oscillation.

ρ(r) =

8

>

>

<

>

>

:

ρi, r < a− `,
ρi

2

»

1 + χ− (1 − χ) sin
π(2r + `− 2a)

2`

–

, a− ` < r < a,

ρe, r > a.

(58)

Here χ = ρe/ρi. Ruderman and Roberts solved the initial value problem for the lin-

earised MHD equations in the cold plasma approximation. They found that the kink
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oscillation of the magnetic tube emerges from almost arbitrary perturbation in a few

oscillation periods. Then it starts to damp due to resonant absorption of the wave en-

ergy in the vicinity of the resonant position inside the annulus. The resonant position is

determined by the condition that, at this position, the frequency of the kink oscillation

matches the local Alfvén frequency. In the thin tube thin boundary layer (TTTB) ap-

proximation they obtained that the ratio of the damping time to the oscillation period

is given by
tdec

P
=

2a

π`

χ+ 1

χ− 1
, (59)

where T = 2π/ωk. This expression can be obtained as a particular case of a more

general expression for the damping time given by Goossens et al. (1992). Substituting

in equation (59) T = 256 s and tdec = 870 s reported by Nakariakov et al. (1999),

Ruderman and Roberts found `/a ≈ 0.23. Goossens et al. (2002) applied a similar

analysis to estimate `/a for a collection of loop oscillations using the data provided by

Ofman and Aschwanden (2002). The results that they obtained are given in the table

below:

Table 1.

No. L [Mm] a [Mm] R/L P [s] tdec [s] `/R

1 168 3.60 0.021 261 840 0.16

2 72 3.35 0.047 265 300 0.44

3 174 4.15 0.024 316 500 0.31

4 204 3.95 0.019 277 400 0.34

5 162 3.65 0.023 272 849 0.16

6 390 8.40 0.022 522 1200 0.22

7 258 3.50 0.014 435 600 0.36

8 168 3.15 0.019 143 200 0.35

9 406 4.60 0.011 423 800 0.26

10 192 3.45 0.018 185 200 0.46

11 146 7.90 0.054 396 400 0.49

In their paper Goossens et al. used the notation slightly different from that used by

Ruderman and Roberts (2002). They denoted the loop radius as R, and the annulus

containing the inhomogeneous plasma was defined by the inequality R − `/2 < r <

R + `/2, so that a = R + `/2. In addition they used the linear density profile, so that

the equilibrium density in their model was given by

ρ(r) =

8

>

>

<

>

>

:

ρi, r < R− `/2,
ρi

2

»

1 + χ+
2

`
(R− r)(1 − χ)

–

, R− `/2 < r < R + `/2,

ρe, r > R+ `/2.

(60)

For this density profile the ratio of the damping time and period is given by

tdec

P
=

4a

π2`

χ+ 1

χ− 1
. (61)

If we use the sinusoidal density profile (58), then we obtain the values of `/R approxi-

mately 1.57 times larger than those given in Table 1.

We can see that, at least for some events, the ratio `/R is not small at all. This

observation inspired Van Doorsselaere et al. (2004a) to study the damping of kink
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oscillations of magnetic flux tubes numerically. The results of their numerical study

are shown in Fig. 11 adopted from Van Doorsselaere et al. (2004a). This figure displays

the results of the numerical calculations for a very thin tube, R/L ≈ 0.006. However

they remain practically the same for a much thicker tube with R/L ≈ 0.06. We can see

that even for the largest value of `/R, which is `/R = 0.49, the difference between the

values of tdec/P obtained numerically and analytically in the TTTB approximation

is less than 13%. Hence, we conclude that the analytic TTTB theory gives quite a

reasonable approximation for the damping time.

Fig. 11 The crosses show the numerically calculated ration of P/tdec, while the straight line
gives this ratio calculated analytically with the use of the TTTB approximation. In this figure
R/L = 0.02/π ≈ 0.006 and χ = 0.1.
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Later the damping of kink oscillations of straight longitudinally stratified magnetic

tubes due to resonant absorption was studied numerically by Andries et al. (2005b)

in the TTTB approximation, and by Arregui et al. (2005, 2006) for the arbitrary

thickness of the layer where the density varies in the radial direction. It was found

that, qualitatively, the damping due to resonant absorption is the same in longitudinally

stratified tubes and tubes homogeneous in the longitudinal direction. One interesting

result found by Andries et al. (2005b) was that the longitudinal stratification practically

does not affect the ratio tdec/P . Dymova and Ruderman (2006a) studied the damping

of kink oscillations of straight longitudinally stratified magnetic tubes analytically with

the use of the TTTB approximation. They rigorously proved that, if ρ(r, z) = ρi(z)f(r),

where f(r) = 1 for r < a − `, f(r) = χ for r > a, and f(r) monotonically decreases

for a − ` < r < a, then the ratio tdec/P is exactly the same as in the longitudinally

homogeneous tube (i.e. in the tube with ρi = const).

Terradas et al. (2006) studied numerically the resonant damping of kink oscilla-

tions of longitudinally stratified curved coronal loops and found that the curvature

practically does not affect the damping. Recently Terradas et al. (2008) investigated

the resonant damping of kink oscillations of longitudinally homogeneous coronal loops,
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however with the density dependent on r and ϕ. They found that resonant absorption

still provides quite efficient damping of kink oscillations.

The main conclusion that can be made on the basis of the numerous studies of reso-

nant damping of kink oscillations is that resonant absorption is a very robust damping

mechanism. The damping time due to resonant absorption is only weakly dependent on

particular properties of the background state. A detailed review on resonant damping

of coronal loop oscillations is given by Goossens et al. (2006).

11 Application to coronal seismology

Although the transverse coronal loop oscillation is an interesting phenomenon on its

own, its main importance is related to its application to the coronal seismology. The

idea of the coronal seismology was first put forward by Uchida (1970) and Roberts et al.

(1984). This idea is similar to the idea of any seismology: to obtain information about

a medium from the observations of the wave propagation in this medium. In the case

of coronal seismology we would like to obtain information about the parameters of the

coronal plasma and magnetic field from the observations of the MHD wave propagation

in the solar corona. Recently it was suggested to consider coronal seismology as a part

of magneto-seismology, which is the seismology based on observation of the propagation

of MHD waves (Verth at al. (2007); ?).

The observations of transverse coronal loop oscillations were first used for coronal

seismology by Nakariakov and Ofman (2001). They used the event observed by TRACE

on 14th July 1998 to estimate the magnetic field magnitude in a loop. In what follows we

will briefly reproduce their analysis. On 14th July 1998 TRACE observed a transverse

oscillation of a coronal loop with the length L ≈ 130 Mm. The oscillation period was

T ≈ 256 s. The ion number density of the plasma in the loop was estimated to be

ni ≈ 1.6 × 109 cm−3. The authors arbitrarily took ρi/ρe = 10, however this quantity

only weakly affect the obtained results. For example, reducing this ratio to 3 changes

the estimate of the magnetic field magnitude by less than 9%. Taking into account the

uncertainty in the measurement of L, T and ni this change is completely insignificant.

The kink speed is given by Ck = 2L/T ≈ 1015 km/s. Then the Alfvén speed in the

loop is equal to VAi = (1+ ρe/ρi)
1/2(Ck/

√
2) ≈ 752 km/s, and we obtain the estimate

for the magnetic field magnitude

B = VAi
√
µ0mini ≈ 13 × 10−4 T = 13 (± 9) G.

The error bar ±9 is related with the uncertainty in the measurement of L, T and ni.

Hence, the final conclusion made by Nakariakov and Ofman (2001) was that the field

magnitude should be between 4 and 22 Gauss. This estimate is in a good agreement

with the estimates obtained by using other methods.

The second application of the observations of the transverse coronal loop oscilla-

tions to the coronal seismology is related to the estimate of atmospheric scale height

in the corona. Verwichte et al. (2004) reported two cases of observations of the trans-

verse coronal loop oscillations where, in addition to the fundamental harmonic, the

first overtone was also observed. A very important property of these observations was

that the ratio of the frequencies of the first overtone and the fundamental harmonic

was less than 2. It was equal to 1.81 and 1.64 respectively (note that later Van Doors-

selaere et al. (2007) used the improved technique to correct this values to 1.82 and

1.58). Andries et al. (2005a) suggested that this deviation of the frequency ratio from
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2 is caused by the variation of the plasma density along the loop. Then they used this

idea to obtain estimates for the coronal scale height. In their analysis they assumed

that the corona is isothermal, and a coronal loop has the half-circle shape and situated

in the vertical plane. In that case the radius of the half-circle, R, is related to the loop

length L by R = L/π. If we introduce the coordinate along the loop, z, 0 ≤ z ≤ L, and

the height of a point in the loop in the solar atmosphere, h, then these two quantities

are related by

h =
L

π
sin

π(L− z)

L
.

In the isothermal atmosphere the plasma density in the loop is given by

ρi(z) = ρf e
−h/H = ρf exp

„

− L

πH
sin

π(L− z)

L

«

,

where H is the atmospheric scale height and ρf is the density at the loop foot points.

It was also assumed that the plasma temperature inside and outside the loop is the

same, so that ρi(z)/ρe(z) = const. Then it was arbitrarily taken ρi(z)/ρe(z) = 10

(however once again the results are not very sensitive to this parameter). After that

the frequencies of the fundamental harmonic and the first overtone were calculated,

and their ratio was found as a function of H. It tunes out that this is a monotoni-

cally decreasing function. The inverse function gives H as a function of the ratio of

frequencies of the fundamental harmonic and the first overtone. Using this technique

Andries et al. (2005a) obtained that the atmospheric scale height was equal to 68 Mm

in the first event, and 36 Mm in the second event.

Dymova and Ruderman (2006b) studied the effect of the loop shape on the estimate

of the atmospheric scale height. They considered coronal loops with the shape of an

arc of a circle of radius R immersed in an isothermal atmosphere. The loop shape is

characterised by the parameter λ = l/R, where l is the distance from the circle centre

to the the solar surface. This distance is considered as positive when the circle centre is

below the solar surface and as negative when it is above. Then Dymova and Ruderman

(2006b) fixed the height of the loop apex point, ha, and obtained the estimates of H/ha

for λ varying from −0.9, which corresponds to an almost circular loop, to 0.9, which

corresponds to an almost straight loop. They applied their analysis to the two cases

of simultaneous observations of the fundamental mode and first overtone reported by

Verwichte et al. (2004). As a result they obtained H varying from 79 to 59 Mm in

the first case, and from 42 to 33 Mm in the second case. Recall that for loops with

a half-circle shape Andries et al. (2005a) obtained the estimates for the atmospheric

scale height equal to 68 Mm and 36 Mm respectively. We see that the loop shape is

sufficiently important for the estimate of the atmospheric scale height.

Recently Ruderman et al. (2008) studied the effect of the loop expansion on the

estimate of the atmospheric scale height. They showed that this estimate is a mono-

tonically decreasing function of the loop expansion factor Γ , which is the ratio of the

loop radius at the loop apex and the loop foot points. One illuminating example that

they gave is the following. Van Doorsselaere et al. (2007) reported the third case of the

simultaneous observation of the fundamental harmonic and the first overtone made by

TRACE in 1998. Using the technique developed by Andries et al. (2005a) and assuming

that the radius of the loop cross-section does not vary along the loop they obtained

the estimate for the atmospheric scale height 109 Mm. It is about twice larger than

the scale height calculated on the basis of the measurement of the temperature. Van

Doorsselaere et al. (2007) interpreted their result as the evidence that the observed



29

loop was not in the equilibrium. Not claiming that this interpretation is wrong Ruder-

man et al. (2008) suggested another possible interpretation. If we assume that the loop

expansion factor is Γ = 1.5, then we obtain the estimate H ≈ 50 Mm, which is in a

complete agreement with the estimate of H calculated on the basis of the measurement

of the temperature for the loop in equilibrium.

A more detailed discussion of the use of simultaneous observations of the funda-

mental harmonic and overtones of the kink oscillations of coronal loops for coronal

seismology is given by Andries et al. (2009).

12 Discussion and conclusions

We see that a very serious progress in the theory of the transverse coronal loop oscilla-

tions was made in the decade that passed after the first observation of this oscillations

made by TRACE in 1998. The new more sophisticated models of this phenomenon in-

corporating such effects as the density and cross-section radius variation along the loop,

the loop curvature, the loop non-circular cross-section, and the magnetic twist were

developed. The resonant absorption was identified as the most probable mechanism

of the oscillation damping. The theoretical basis for the application of observations of

coronal loop transverse oscillations to coronal seismology was created.

The method of asymptotic expansions was proved to be a powerful tool for study-

ing the transverse coronal loop oscillations. Its applicability is based on the fact that

the observed coronal loops are thin structures. The results obtained with the use of

this method are practically the same as those obtained with the use of sophisticated

numerical studies. A substantial progress was made in studying the resonant damp-

ing of the transverse oscillation with the aid of the TTTB (thin tube thin boundary

layer) approximation. However the accuracy of the thin boundary layer approximation,

in general, is much lower than that of the thin tube approximation, so that parallel

numerical study of damping is desirable.

In spite of all achievements of the theory of transverse coronal loop oscillations it

is still very far from its completion. There are large number of outstanding problems

that are a real challenge to theorists. In what follows we try to present a list of these

unsolved problems. The reader should keep in mind that this list is very far from being

complete.

An important problem in application to the coronal seismology is the robustness of

models that we use. Up to now in the majority of models describing the transverse os-

cillations of coronal loops it is assumed that the loop cross-section is circular. However,

at present there are no observational evidences supporting this assumption. Hence, it is

very important to find out how much the eigenfrequencies and eigenmodes of the fast

kink oscillations of magnetic tubes depend on the shape of the cross-section. The first

step in this direction was made by Ruderman (2003) and Erdélyi and Morton (2009)

who studied the oscillations of tubes with the elliptic cross-section. But it is desirable

to study the fast kink oscillations of tubes with arbitrary cross-sections.

At present only oscillations of plane loops, i.e. loops with axes that are planar curves

were studied. However there are observation evidences that at least some of loops are

not plane and their axes are three-dimensional curves with the non-zero torsion. The

effect of torsion on the fast kink oscillations of magnetic tubes should be studied.

The effect of loop cooling on fast kink oscillations of coronal loops deserves serious

attention. The first step in studying this problem has been made by Morton and Erdélyi
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(2009) who used the simplest possible model of a cooling loop. Studying this effect using

more realistic models for the description of non-stationary background states of cooling

loops is on the agenda.

In accordance with the observations very often the displacement of the loop axis is

of the order of or even larger than the radius of the loop cross-section. In that case the

linear description of fast kink oscillations is not valid anymore and nonlinear effects

should be taken into account. The development of the nonlinear theory of fast kink

oscillations of coronal loops is, from our point of view, the most challenging problem

for theorists studying the transverse oscillations of coronal loops.
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