forked from cplusplus/draft
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmemory.tex
7191 lines (6032 loc) · 218 KB
/
memory.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
%!TEX root = std.tex
\rSec0[mem]{Memory management library}
\rSec1[mem.general]{General}
\pnum
This Clause describes components for memory management.
\pnum
The following subclauses describe general memory management facilities,
smart pointers, memory resources, and scoped allocators,
as summarized in \tref{mem.summary}.
\begin{libsumtab}{Memory management library summary}{mem.summary}
\ref{memory} & Memory & \tcode{<cstdlib>}, \tcode{<memory>} \\ \rowsep
\ref{smartptr} & Smart pointers & \tcode{<memory>} \\ \rowsep
\ref{mem.res} & Memory resources & \tcode{<memory_resource>} \\ \rowsep
\ref{allocator.adaptor} & Scoped allocators & \tcode{<scoped_allocator>} \\
\end{libsumtab}
\rSec1[memory]{Memory}
\rSec2[memory.general]{General}
\pnum
Subclause~\ref{memory} describes the contents of the header
\libheaderref{memory} and some
of the contents of the header \libheaderref{cstdlib}.
\rSec2[memory.syn]{Header \tcode{<memory>} synopsis}
\pnum
The header \libheaderdef{memory} defines several types and function templates that
describe properties of pointers and pointer-like types, manage memory
for containers and other template types, destroy objects, and
construct objects in
uninitialized memory
buffers~(\ref{pointer.traits}--\ref{specialized.addressof} and \ref{specialized.algorithms}).
The header also defines the templates
\tcode{unique_ptr}, \tcode{shared_ptr}, \tcode{weak_ptr},
\tcode{out_ptr_t}, \tcode{inout_ptr_t}, and various function
templates that operate on objects of these types\iref{smartptr}.
\pnum
Let \tcode{\exposid{POINTER_OF}(T)} denote a type that is
\begin{itemize}
\item
\tcode{T::pointer} if the \grammarterm{qualified-id} \tcode{T::pointer}
is valid and denotes a type,
\item
otherwise, \tcode{T::element_type*}
if the \grammarterm{qualified-id} \tcode{T::element_type}
is valid and denotes a type,
\item
otherwise, \tcode{pointer_traits<T>::element_type*}.
\end{itemize}
\pnum
Let \tcode{\exposid{POINTER_OF_OR}(T, U)} denote a type that is:
\begin{itemize}
\item
\tcode{\exposid{POINTER_OF}(T)}
if \tcode{\exposid{POINTER_OF}(T)} is valid and denotes a type,
\item
otherwise, \tcode{U}.
\end{itemize}
\begin{codeblock}
#include <compare> // see \ref{compare.syn}
namespace std {
// \ref{pointer.traits}, pointer traits
template<class Ptr> struct pointer_traits; // freestanding
template<class T> struct pointer_traits<T*>; // freestanding
// \ref{pointer.conversion}, pointer conversion
template<class T>
constexpr T* to_address(T* p) noexcept; // freestanding
template<class Ptr>
constexpr auto to_address(const Ptr& p) noexcept; // freestanding
// \ref{ptr.align}, pointer alignment
void* align(size_t alignment, size_t size, void*& ptr, size_t& space); // freestanding
template<size_t N, class T>
constexpr T* assume_aligned(T* ptr); // freestanding
template<size_t Alignment, class T>
bool is_sufficiently_aligned(T* ptr);
// \ref{obj.lifetime}, explicit lifetime management
template<class T>
T* start_lifetime_as(void* p) noexcept; // freestanding
template<class T>
const T* start_lifetime_as(const void* p) noexcept; // freestanding
template<class T>
volatile T* start_lifetime_as(volatile void* p) noexcept; // freestanding
template<class T>
const volatile T* start_lifetime_as(const volatile void* p) noexcept; // freestanding
template<class T>
T* start_lifetime_as_array(void* p, size_t n) noexcept; // freestanding
template<class T>
const T* start_lifetime_as_array(const void* p, size_t n) noexcept; // freestanding
template<class T>
volatile T* start_lifetime_as_array(volatile void* p, size_t n) noexcept; // freestanding
template<class T>
const volatile T* start_lifetime_as_array(const volatile void* p, // freestanding
size_t n) noexcept;
// \ref{allocator.tag}, allocator argument tag
struct allocator_arg_t { explicit allocator_arg_t() = default; }; // freestanding
inline constexpr allocator_arg_t allocator_arg{}; // freestanding
// \ref{allocator.uses}, \tcode{uses_allocator}
template<class T, class Alloc> struct uses_allocator; // freestanding
// \ref{allocator.uses.trait}, \tcode{uses_allocator}
template<class T, class Alloc>
constexpr bool @\libglobal{uses_allocator_v}@ = uses_allocator<T, Alloc>::value; // freestanding
// \ref{allocator.uses.construction}, uses-allocator construction
template<class T, class Alloc, class... Args>
constexpr auto uses_allocator_construction_args(const Alloc& alloc, // freestanding
Args&&... args) noexcept;
template<class T, class Alloc, class Tuple1, class Tuple2>
constexpr auto uses_allocator_construction_args(const Alloc& alloc, // freestanding
piecewise_construct_t,
Tuple1&& x, Tuple2&& y) noexcept;
template<class T, class Alloc>
constexpr auto uses_allocator_construction_args(const Alloc& alloc) noexcept; // freestanding
template<class T, class Alloc, class U, class V>
constexpr auto uses_allocator_construction_args(const Alloc& alloc, // freestanding
U&& u, V&& v) noexcept;
template<class T, class Alloc, class U, class V>
constexpr auto uses_allocator_construction_args(const Alloc& alloc, // freestanding
pair<U, V>& pr) noexcept;
template<class T, class Alloc, class U, class V>
constexpr auto uses_allocator_construction_args(const Alloc& alloc, // freestanding
const pair<U, V>& pr) noexcept;
template<class T, class Alloc, class U, class V>
constexpr auto uses_allocator_construction_args(const Alloc& alloc, // freestanding
pair<U, V>&& pr) noexcept;
template<class T, class Alloc, class U, class V>
constexpr auto uses_allocator_construction_args(const Alloc& alloc, // freestanding
const pair<U, V>&& pr) noexcept;
template<class T, class Alloc, @\exposconcept{pair-like}@ P>
constexpr auto uses_allocator_construction_args(const Alloc& alloc, // freestanding
P&& p) noexcept;
template<class T, class Alloc, class U>
constexpr auto uses_allocator_construction_args(const Alloc& alloc, // freestanding
U&& u) noexcept;
template<class T, class Alloc, class... Args>
constexpr T make_obj_using_allocator(const Alloc& alloc, Args&&... args); // freestanding
template<class T, class Alloc, class... Args>
constexpr T* uninitialized_construct_using_allocator(T* p, // freestanding
const Alloc& alloc, Args&&... args);
// \ref{allocator.traits}, allocator traits
template<class Alloc> struct allocator_traits; // freestanding
template<class Pointer, class SizeType = size_t>
struct allocation_result { // freestanding
Pointer ptr;
SizeType count;
};
// \ref{default.allocator}, the default allocator
template<class T> class allocator;
template<class T, class U>
constexpr bool operator==(const allocator<T>&, const allocator<U>&) noexcept;
// \ref{specialized.addressof}, addressof
template<class T>
constexpr T* addressof(T& r) noexcept; // freestanding
template<class T>
const T* addressof(const T&&) = delete; // freestanding
// \ref{specialized.algorithms}, specialized algorithms
// \ref{special.mem.concepts}, special memory concepts
template<class I>
concept @\exposconcept{nothrow-input-iterator}@ = @\seebelow@; // \expos
template<class I>
concept @\exposconcept{nothrow-forward-iterator}@ = @\seebelow@; // \expos
template<class S, class I>
concept @\exposconcept{nothrow-sentinel-for}@ = @\seebelow@; // \expos
template<class R>
concept @\exposconcept{nothrow-input-range}@ = @\seebelow@; // \expos
template<class R>
concept @\exposconcept{nothrow-forward-range}@ = @\seebelow@; // \expos
template<class NoThrowForwardIterator>
constexpr void uninitialized_default_construct(NoThrowForwardIterator first, // freestanding
NoThrowForwardIterator last);
template<class ExecutionPolicy, class NoThrowForwardIterator>
void uninitialized_default_construct(ExecutionPolicy&& exec, // see \ref{algorithms.parallel.overloads}
NoThrowForwardIterator first,
NoThrowForwardIterator last);
template<class NoThrowForwardIterator, class Size>
constexpr NoThrowForwardIterator
uninitialized_default_construct_n(NoThrowForwardIterator first, Size n); // freestanding
template<class ExecutionPolicy, class NoThrowForwardIterator, class Size>
NoThrowForwardIterator
uninitialized_default_construct_n(ExecutionPolicy&& exec, // see \ref{algorithms.parallel.overloads}
NoThrowForwardIterator first, Size n);
namespace ranges {
template<@\exposconcept{nothrow-forward-iterator}@ I, @\exposconcept{nothrow-sentinel-for}@<I> S>
requires @\libconcept{default_initializable}@<iter_value_t<I>>
constexpr I uninitialized_default_construct(I first, S last); // freestanding
template<@\exposconcept{nothrow-forward-range}@ R>
requires @\libconcept{default_initializable}@<range_value_t<R>>
constexpr borrowed_iterator_t<R> uninitialized_default_construct(R&& r); // freestanding
template<@\exposconcept{nothrow-forward-iterator}@ I>
requires @\libconcept{default_initializable}@<iter_value_t<I>>
constexpr I uninitialized_default_construct_n(I first, // freestanding
iter_difference_t<I> n);
}
template<class NoThrowForwardIterator>
constexpr void uninitialized_value_construct(NoThrowForwardIterator first, // freestanding
NoThrowForwardIterator last);
template<class ExecutionPolicy, class NoThrowForwardIterator>
void uninitialized_value_construct(ExecutionPolicy&& exec, // see \ref{algorithms.parallel.overloads}
NoThrowForwardIterator first,
NoThrowForwardIterator last);
template<class NoThrowForwardIterator, class Size>
constexpr NoThrowForwardIterator
uninitialized_value_construct_n(NoThrowForwardIterator first, Size n); // freestanding
template<class ExecutionPolicy, class NoThrowForwardIterator, class Size>
NoThrowForwardIterator
uninitialized_value_construct_n(ExecutionPolicy&& exec, // see \ref{algorithms.parallel.overloads}
NoThrowForwardIterator first, Size n);
namespace ranges {
template<@\exposconcept{nothrow-forward-iterator}@ I, @\exposconcept{nothrow-sentinel-for}@<I> S>
requires @\libconcept{default_initializable}@<iter_value_t<I>>
constexpr I uninitialized_value_construct(I first, S last); // freestanding
template<@\exposconcept{nothrow-forward-range}@ R>
requires @\libconcept{default_initializable}@<range_value_t<R>>
constexpr borrowed_iterator_t<R> uninitialized_value_construct(R&& r); // freestanding
template<@\exposconcept{nothrow-forward-iterator}@ I>
requires @\libconcept{default_initializable}@<iter_value_t<I>>
constexpr I uninitialized_value_construct_n(I first, // freestanding
iter_difference_t<I> n);
}
template<class InputIterator, class NoThrowForwardIterator>
constexpr NoThrowForwardIterator uninitialized_copy(InputIterator first, // freestanding
InputIterator last,
NoThrowForwardIterator result);
template<class ExecutionPolicy, class ForwardIterator, class NoThrowForwardIterator>
NoThrowForwardIterator uninitialized_copy(ExecutionPolicy&& exec, // see \ref{algorithms.parallel.overloads}
ForwardIterator first, ForwardIterator last,
NoThrowForwardIterator result);
template<class InputIterator, class Size, class NoThrowForwardIterator>
constexpr NoThrowForwardIterator uninitialized_copy_n(InputIterator first, // freestanding
Size n,
NoThrowForwardIterator result);
template<class ExecutionPolicy, class ForwardIterator, class Size,
class NoThrowForwardIterator>
NoThrowForwardIterator uninitialized_copy_n(ExecutionPolicy&& exec, // see \ref{algorithms.parallel.overloads}
ForwardIterator first, Size n,
NoThrowForwardIterator result);
namespace ranges {
template<class I, class O>
using uninitialized_copy_result = in_out_result<I, O>; // freestanding
template<@\libconcept{input_iterator}@ I, @\libconcept{sentinel_for}@<I> S1,
@\exposconcept{nothrow-forward-iterator}@ O, @\exposconcept{nothrow-sentinel-for}@<O> S2>
requires @\libconcept{constructible_from}@<iter_value_t<O>, iter_reference_t<I>>
constexpr uninitialized_copy_result<I, O>
uninitialized_copy(I ifirst, S1 ilast, O ofirst, S2 olast); // freestanding
template<@\libconcept{input_range}@ IR, @\exposconcept{nothrow-forward-range}@ OR>
requires @\libconcept{constructible_from}@<range_value_t<OR>, range_reference_t<IR>>
constexpr uninitialized_copy_result<borrowed_iterator_t<IR>, borrowed_iterator_t<OR>>
uninitialized_copy(IR&& in_range, OR&& out_range); // freestanding
template<class I, class O>
using uninitialized_copy_n_result = in_out_result<I, O>; // freestanding
template<@\libconcept{input_iterator}@ I, @\exposconcept{nothrow-forward-iterator}@ O, @\exposconcept{nothrow-sentinel-for}@<O> S>
requires @\libconcept{constructible_from}@<iter_value_t<O>, iter_reference_t<I>>
constexpr uninitialized_copy_n_result<I, O>
uninitialized_copy_n(I ifirst, iter_difference_t<I> n, // freestanding
O ofirst, S olast);
}
template<class InputIterator, class NoThrowForwardIterator>
constexpr NoThrowForwardIterator uninitialized_move(InputIterator first, // freestanding
InputIterator last,
NoThrowForwardIterator result);
template<class ExecutionPolicy, class ForwardIterator, class NoThrowForwardIterator>
NoThrowForwardIterator uninitialized_move(ExecutionPolicy&& exec, // see \ref{algorithms.parallel.overloads}
ForwardIterator first, ForwardIterator last,
NoThrowForwardIterator result);
template<class InputIterator, class Size, class NoThrowForwardIterator>
constexpr pair<InputIterator, NoThrowForwardIterator>
uninitialized_move_n(InputIterator first, Size n, // freestanding
NoThrowForwardIterator result);
template<class ExecutionPolicy, class ForwardIterator, class Size,
class NoThrowForwardIterator>
pair<ForwardIterator, NoThrowForwardIterator>
uninitialized_move_n(ExecutionPolicy&& exec, // see \ref{algorithms.parallel.overloads}
ForwardIterator first, Size n, NoThrowForwardIterator result);
namespace ranges {
template<class I, class O>
using uninitialized_move_result = in_out_result<I, O>; // freestanding
template<@\libconcept{input_iterator}@ I, @\libconcept{sentinel_for}@<I> S1,
@\exposconcept{nothrow-forward-iterator}@ O, @\exposconcept{nothrow-sentinel-for}@<O> S2>
requires @\libconcept{constructible_from}@<iter_value_t<O>, iter_rvalue_reference_t<I>>
constexpr uninitialized_move_result<I, O>
uninitialized_move(I ifirst, S1 ilast, O ofirst, S2 olast); // freestanding
template<@\libconcept{input_range}@ IR, @\exposconcept{nothrow-forward-range}@ OR>
requires @\libconcept{constructible_from}@<range_value_t<OR>, range_rvalue_reference_t<IR>>
constexpr uninitialized_move_result<borrowed_iterator_t<IR>, borrowed_iterator_t<OR>>
uninitialized_move(IR&& in_range, OR&& out_range); // freestanding
template<class I, class O>
using uninitialized_move_n_result = in_out_result<I, O>; // freestanding
template<@\libconcept{input_iterator}@ I,
@\exposconcept{nothrow-forward-iterator}@ O, @\exposconcept{nothrow-sentinel-for}@<O> S>
requires @\libconcept{constructible_from}@<iter_value_t<O>, iter_rvalue_reference_t<I>>
constexpr uninitialized_move_n_result<I, O>
uninitialized_move_n(I ifirst, iter_difference_t<I> n, // freestanding
O ofirst, S olast);
}
template<class NoThrowForwardIterator, class T>
constexpr void uninitialized_fill(NoThrowForwardIterator first, // freestanding
NoThrowForwardIterator last, const T& x);
template<class ExecutionPolicy, class NoThrowForwardIterator, class T>
void uninitialized_fill(ExecutionPolicy&& exec, // see \ref{algorithms.parallel.overloads}
NoThrowForwardIterator first, NoThrowForwardIterator last,
const T& x);
template<class NoThrowForwardIterator, class Size, class T>
constexpr NoThrowForwardIterator
uninitialized_fill_n(NoThrowForwardIterator first, Size n, const T& x); // freestanding
template<class ExecutionPolicy, class NoThrowForwardIterator, class Size, class T>
NoThrowForwardIterator
uninitialized_fill_n(ExecutionPolicy&& exec, // see \ref{algorithms.parallel.overloads}
NoThrowForwardIterator first, Size n, const T& x);
namespace ranges {
template<@\exposconcept{nothrow-forward-iterator}@ I, @\exposconcept{nothrow-sentinel-for}@<I> S, class T>
requires @\libconcept{constructible_from}@<iter_value_t<I>, const T&>
constexpr I uninitialized_fill(I first, S last, const T& x); // freestanding
template<@\exposconcept{nothrow-forward-range}@ R, class T>
requires @\libconcept{constructible_from}@<range_value_t<R>, const T&>
constexpr borrowed_iterator_t<R> uninitialized_fill(R&& r, const T& x); // freestanding
template<@\exposconcept{nothrow-forward-iterator}@ I, class T>
requires @\libconcept{constructible_from}@<iter_value_t<I>, const T&>
constexpr I uninitialized_fill_n(I first, // freestanding
iter_difference_t<I> n, const T& x);
}
// \ref{specialized.construct}, \tcode{construct_at}
template<class T, class... Args>
constexpr T* construct_at(T* location, Args&&... args); // freestanding
namespace ranges {
template<class T, class... Args>
constexpr T* construct_at(T* location, Args&&... args); // freestanding
}
// \ref{specialized.destroy}, \tcode{destroy}
template<class T>
constexpr void destroy_at(T* location); // freestanding
template<class NoThrowForwardIterator>
constexpr void destroy(NoThrowForwardIterator first, // freestanding
NoThrowForwardIterator last);
template<class ExecutionPolicy, class NoThrowForwardIterator>
void destroy(ExecutionPolicy&& exec, // see \ref{algorithms.parallel.overloads}
NoThrowForwardIterator first, NoThrowForwardIterator last);
template<class NoThrowForwardIterator, class Size>
constexpr NoThrowForwardIterator destroy_n(NoThrowForwardIterator first, // freestanding
Size n);
template<class ExecutionPolicy, class NoThrowForwardIterator, class Size>
NoThrowForwardIterator destroy_n(ExecutionPolicy&& exec, // see \ref{algorithms.parallel.overloads}
NoThrowForwardIterator first, Size n);
namespace ranges {
template<@\libconcept{destructible}@ T>
constexpr void destroy_at(T* location) noexcept; // freestanding
template<@\exposconcept{nothrow-input-iterator}@ I, @\exposconcept{nothrow-sentinel-for}@<I> S>
requires @\libconcept{destructible}@<iter_value_t<I>>
constexpr I destroy(I first, S last) noexcept; // freestanding
template<@\exposconcept{nothrow-input-range}@ R>
requires @\libconcept{destructible}@<range_value_t<R>>
constexpr borrowed_iterator_t<R> destroy(R&& r) noexcept; // freestanding
template<@\exposconcept{nothrow-input-iterator}@ I>
requires @\libconcept{destructible}@<iter_value_t<I>>
constexpr I destroy_n(I first, iter_difference_t<I> n) noexcept; // freestanding
}
// \ref{unique.ptr}, class template \tcode{unique_ptr}
template<class T> struct default_delete; // freestanding
template<class T> struct default_delete<T[]>; // freestanding
template<class T, class D = default_delete<T>> class unique_ptr; // freestanding
template<class T, class D> class unique_ptr<T[], D>; // freestanding
template<class T, class... Args>
constexpr unique_ptr<T> make_unique(Args&&... args); // \tcode{T} is not array
template<class T>
constexpr unique_ptr<T> make_unique(size_t n); // \tcode{T} is \tcode{U[]}
template<class T, class... Args>
@\unspecnc@ make_unique(Args&&...) = delete; // \tcode{T} is \tcode{U[N]}
template<class T>
constexpr unique_ptr<T> make_unique_for_overwrite(); // \tcode{T} is not array
template<class T>
constexpr unique_ptr<T> make_unique_for_overwrite(size_t n); // \tcode{T} is \tcode{U[]}
template<class T, class... Args>
@\unspecnc@ make_unique_for_overwrite(Args&&...) = delete; // \tcode{T} is \tcode{U[N]}
template<class T, class D>
constexpr void swap(unique_ptr<T, D>& x, unique_ptr<T, D>& y) noexcept; // freestanding
template<class T1, class D1, class T2, class D2>
constexpr bool operator==(const unique_ptr<T1, D1>& x, // freestanding
const unique_ptr<T2, D2>& y);
template<class T1, class D1, class T2, class D2>
bool operator<(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y); // freestanding
template<class T1, class D1, class T2, class D2>
bool operator>(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y); // freestanding
template<class T1, class D1, class T2, class D2>
bool operator<=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y); // freestanding
template<class T1, class D1, class T2, class D2>
bool operator>=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y); // freestanding
template<class T1, class D1, class T2, class D2>
requires @\libconcept{three_way_comparable_with}@<typename unique_ptr<T1, D1>::pointer,
typename unique_ptr<T2, D2>::pointer>
compare_three_way_result_t<typename unique_ptr<T1, D1>::pointer,
typename unique_ptr<T2, D2>::pointer>
operator<=>(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y); // freestanding
template<class T, class D>
constexpr bool operator==(const unique_ptr<T, D>& x, nullptr_t) noexcept; // freestanding
template<class T, class D>
constexpr bool operator<(const unique_ptr<T, D>& x, nullptr_t); // freestanding
template<class T, class D>
constexpr bool operator<(nullptr_t, const unique_ptr<T, D>& y); // freestanding
template<class T, class D>
constexpr bool operator>(const unique_ptr<T, D>& x, nullptr_t); // freestanding
template<class T, class D>
constexpr bool operator>(nullptr_t, const unique_ptr<T, D>& y); // freestanding
template<class T, class D>
constexpr bool operator<=(const unique_ptr<T, D>& x, nullptr_t); // freestanding
template<class T, class D>
constexpr bool operator<=(nullptr_t, const unique_ptr<T, D>& y); // freestanding
template<class T, class D>
constexpr bool operator>=(const unique_ptr<T, D>& x, nullptr_t); // freestanding
template<class T, class D>
constexpr bool operator>=(nullptr_t, const unique_ptr<T, D>& y); // freestanding
template<class T, class D>
requires @\libconcept{three_way_comparable}@<typename unique_ptr<T, D>::pointer>
constexpr compare_three_way_result_t<typename unique_ptr<T, D>::pointer>
operator<=>(const unique_ptr<T, D>& x, nullptr_t); // freestanding
template<class E, class T, class Y, class D>
basic_ostream<E, T>& operator<<(basic_ostream<E, T>& os, const unique_ptr<Y, D>& p);
// \ref{util.smartptr.weak.bad}, class \tcode{bad_weak_ptr}
class bad_weak_ptr;
// \ref{util.smartptr.shared}, class template \tcode{shared_ptr}
template<class T> class shared_ptr;
// \ref{util.smartptr.shared.create}, \tcode{shared_ptr} creation
template<class T, class... Args>
shared_ptr<T> make_shared(Args&&... args); // \tcode{T} is not array
template<class T, class A, class... Args>
shared_ptr<T> allocate_shared(const A& a, Args&&... args); // \tcode{T} is not array
template<class T>
shared_ptr<T> make_shared(size_t N); // \tcode{T} is \tcode{U[]}
template<class T, class A>
shared_ptr<T> allocate_shared(const A& a, size_t N); // \tcode{T} is \tcode{U[]}
template<class T>
shared_ptr<T> make_shared(); // \tcode{T} is \tcode{U[N]}
template<class T, class A>
shared_ptr<T> allocate_shared(const A& a); // \tcode{T} is \tcode{U[N]}
template<class T>
shared_ptr<T> make_shared(size_t N, const remove_extent_t<T>& u); // \tcode{T} is \tcode{U[]}
template<class T, class A>
shared_ptr<T> allocate_shared(const A& a, size_t N,
const remove_extent_t<T>& u); // \tcode{T} is \tcode{U[]}
template<class T>
shared_ptr<T> make_shared(const remove_extent_t<T>& u); // \tcode{T} is \tcode{U[N]}
template<class T, class A>
shared_ptr<T> allocate_shared(const A& a, const remove_extent_t<T>& u); // \tcode{T} is \tcode{U[N]}
template<class T>
shared_ptr<T> make_shared_for_overwrite(); // \tcode{T} is not \tcode{U[]}
template<class T, class A>
shared_ptr<T> allocate_shared_for_overwrite(const A& a); // \tcode{T} is not \tcode{U[]}
template<class T>
shared_ptr<T> make_shared_for_overwrite(size_t N); // \tcode{T} is \tcode{U[]}
template<class T, class A>
shared_ptr<T> allocate_shared_for_overwrite(const A& a, size_t N); // \tcode{T} is \tcode{U[]}
// \ref{util.smartptr.shared.cmp}, \tcode{shared_ptr} comparisons
template<class T, class U>
bool operator==(const shared_ptr<T>& a, const shared_ptr<U>& b) noexcept;
template<class T, class U>
strong_ordering operator<=>(const shared_ptr<T>& a, const shared_ptr<U>& b) noexcept;
template<class T>
bool operator==(const shared_ptr<T>& x, nullptr_t) noexcept;
template<class T>
strong_ordering operator<=>(const shared_ptr<T>& x, nullptr_t) noexcept;
// \ref{util.smartptr.shared.spec}, \tcode{shared_ptr} specialized algorithms
template<class T>
void swap(shared_ptr<T>& a, shared_ptr<T>& b) noexcept;
// \ref{util.smartptr.shared.cast}, \tcode{shared_ptr} casts
template<class T, class U>
shared_ptr<T> static_pointer_cast(const shared_ptr<U>& r) noexcept;
template<class T, class U>
shared_ptr<T> static_pointer_cast(shared_ptr<U>&& r) noexcept;
template<class T, class U>
shared_ptr<T> dynamic_pointer_cast(const shared_ptr<U>& r) noexcept;
template<class T, class U>
shared_ptr<T> dynamic_pointer_cast(shared_ptr<U>&& r) noexcept;
template<class T, class U>
shared_ptr<T> const_pointer_cast(const shared_ptr<U>& r) noexcept;
template<class T, class U>
shared_ptr<T> const_pointer_cast(shared_ptr<U>&& r) noexcept;
template<class T, class U>
shared_ptr<T> reinterpret_pointer_cast(const shared_ptr<U>& r) noexcept;
template<class T, class U>
shared_ptr<T> reinterpret_pointer_cast(shared_ptr<U>&& r) noexcept;
// \ref{util.smartptr.getdeleter}, \tcode{shared_ptr} \tcode{get_deleter}
template<class D, class T>
D* get_deleter(const shared_ptr<T>& p) noexcept;
// \ref{util.smartptr.shared.io}, \tcode{shared_ptr} I/O
template<class E, class T, class Y>
basic_ostream<E, T>& operator<<(basic_ostream<E, T>& os, const shared_ptr<Y>& p);
// \ref{util.smartptr.weak}, class template \tcode{weak_ptr}
template<class T> class weak_ptr;
// \ref{util.smartptr.weak.spec}, \tcode{weak_ptr} specialized algorithms
template<class T> void swap(weak_ptr<T>& a, weak_ptr<T>& b) noexcept;
// \ref{util.smartptr.ownerless}, class template \tcode{owner_less}
template<class T = void> struct owner_less;
// \ref{util.smartptr.owner.hash}, struct \tcode{owner_hash}
struct owner_hash;
// \ref{util.smartptr.owner.equal}, struct \tcode{owner_equal}
struct owner_equal;
// \ref{util.smartptr.enab}, class template \tcode{enable_shared_from_this}
template<class T> class enable_shared_from_this;
// \ref{util.smartptr.hash}, hash support
template<class T> struct hash; // freestanding
template<class T, class D> struct hash<unique_ptr<T, D>>; // freestanding
template<class T> struct hash<shared_ptr<T>>;
// \ref{util.smartptr.atomic}, atomic smart pointers
template<class T> struct atomic; // freestanding
template<class T> struct atomic<shared_ptr<T>>;
template<class T> struct atomic<weak_ptr<T>>;
// \ref{out.ptr.t}, class template \tcode{out_ptr_t}
template<class Smart, class Pointer, class... Args>
class out_ptr_t; // freestanding
// \ref{out.ptr}, function template \tcode{out_ptr}
template<class Pointer = void, class Smart, class... Args>
auto out_ptr(Smart& s, Args&&... args); // freestanding
// \ref{inout.ptr.t}, class template \tcode{inout_ptr_t}
template<class Smart, class Pointer, class... Args>
class inout_ptr_t; // freestanding
// \ref{inout.ptr}, function template \tcode{inout_ptr}
template<class Pointer = void, class Smart, class... Args>
auto inout_ptr(Smart& s, Args&&... args); // freestanding
}
\end{codeblock}
\rSec2[pointer.traits]{Pointer traits}
\rSec3[pointer.traits.general]{General}
\pnum
The class template \tcode{pointer_traits} supplies a uniform interface to certain
attributes of pointer-like types.
\indexlibraryglobal{pointer_traits}%
\begin{codeblock}
namespace std {
template<class Ptr> struct pointer_traits {
@\seebelow@;
};
template<class T> struct pointer_traits<T*> {
using pointer = T*;
using element_type = T;
using difference_type = ptrdiff_t;
template<class U> using rebind = U*;
static constexpr pointer pointer_to(@\seebelow@ r) noexcept;
};
}
\end{codeblock}
\rSec3[pointer.traits.types]{Member types}
\pnum
The definitions in this subclause make use of
the following exposition-only class template and concept:
\begin{codeblock}
template<class T>
struct @\exposid{ptr-traits-elem}@ // \expos
{ };
template<class T> requires requires { typename T::element_type; }
struct @\exposid{ptr-traits-elem}@<T>
{ using type = typename T::element_type; };
template<template<class...> class SomePointer, class T, class... Args>
requires (!requires { typename SomePointer<T, Args...>::element_type; })
struct @\exposid{ptr-traits-elem}@<SomePointer<T, Args...>>
{ using type = T; };
template<class Ptr>
concept @\defexposconcept{has-elem-type}@ = // \expos
requires { typename @\exposid{ptr-traits-elem}@<Ptr>::type; }
\end{codeblock}
\pnum
If \tcode{Ptr} satisfies \exposconcept{has-elem-type},
a specialization \tcode{pointer_traits<Ptr>}
generated from the \tcode{pointer_traits} primary template
has the following members
as well as those described in~\ref{pointer.traits.functions};
otherwise, such a specialization has no members by any of those names.
\indexlibrarymember{pointer}{pointer_traits}%
\begin{itemdecl}
using pointer = @\seebelow@;
\end{itemdecl}
\begin{itemdescr}
\pnum
\ctype \tcode{Ptr}.
\end{itemdescr}
\indexlibrarymember{element_type}{pointer_traits}%
\begin{itemdecl}
using element_type = @\seebelow@;
\end{itemdecl}
\begin{itemdescr}
\pnum
\ctype \tcode{typename \exposid{ptr-traits-elem}<Ptr>::type}.
\end{itemdescr}
\indexlibrarymember{difference_type}{pointer_traits}%
\begin{itemdecl}
using difference_type = @\seebelow@;
\end{itemdecl}
\begin{itemdescr}
\pnum
\ctype \tcode{Ptr::difference_type} if
the \grammarterm{qualified-id} \tcode{Ptr::difference_type} is valid and denotes a
type\iref{temp.deduct}; otherwise,
\tcode{ptrdiff_t}.
\end{itemdescr}
\indexlibrarymember{rebind}{pointer_traits}%
\begin{itemdecl}
template<class U> using rebind = @\seebelow@;
\end{itemdecl}
\begin{itemdescr}
\pnum
\templalias \tcode{Ptr::rebind<U>} if
the \grammarterm{qualified-id} \tcode{Ptr::rebind<U>} is valid and denotes a
type\iref{temp.deduct}; otherwise,
\tcode{SomePointer<U, Args>} if
\tcode{Ptr} is a class template instantiation of the form \tcode{SomePointer<T, Args>},
where \tcode{Args} is zero or more type arguments; otherwise, the instantiation of
\tcode{rebind} is ill-formed.
\end{itemdescr}
\rSec3[pointer.traits.functions]{Member functions}
\indexlibrarymember{pointer_to}{pointer_traits}%
\begin{itemdecl}
static pointer pointer_traits::pointer_to(@\seebelow@ r);
static constexpr pointer pointer_traits<T*>::pointer_to(@\seebelow@ r) noexcept;
\end{itemdecl}
\begin{itemdescr}
\pnum
\mandates
For the first member function,
\tcode{Ptr::pointer_to(r)} is well-formed.
\pnum
\expects
For the first member function,
\tcode{Ptr::pointer_to(r)} returns a pointer to \tcode{r}
through which indirection is valid.
\pnum
\returns
The first member function returns \tcode{Ptr::pointer_to(r)}.
The second member function returns \tcode{addressof(r)}.
\pnum
\remarks
If \tcode{element_type} is \cv{}~\keyword{void}, the type of
\tcode{r} is unspecified; otherwise, it is \tcode{element_type\&}.
\end{itemdescr}
\rSec3[pointer.traits.optmem]{Optional members}
\pnum
Specializations of \tcode{pointer_traits} may define the member declared
in this subclause to customize the behavior of the standard library.
A specialization generated from the \tcode{pointer_traits} primary template
has no member by this name.
\indexlibrarymember{to_address}{pointer_traits}%
\begin{itemdecl}
static element_type* to_address(pointer p) noexcept;
\end{itemdecl}
\begin{itemdescr}
\pnum
\returns
A pointer of type \tcode{element_type*} that references
the same location as the argument \tcode{p}.
\pnum
\begin{note}
This function is intended to be the inverse of \tcode{pointer_to}.
If defined, it customizes the behavior of
the non-member function
\tcode{to_address}\iref{pointer.conversion}.
\end{note}
\end{itemdescr}
\rSec2[pointer.conversion]{Pointer conversion}
\indexlibraryglobal{to_address}%
\begin{itemdecl}
template<class T> constexpr T* to_address(T* p) noexcept;
\end{itemdecl}
\begin{itemdescr}
\pnum
\mandates
\tcode{T} is not a function type.
\pnum
\returns
\tcode{p}.
\end{itemdescr}
\indexlibraryglobal{to_address}%
\begin{itemdecl}
template<class Ptr> constexpr auto to_address(const Ptr& p) noexcept;
\end{itemdecl}
\begin{itemdescr}
\pnum
\returns
\tcode{pointer_traits<Ptr>::to_address(p)} if that expression is well-formed
(see \ref{pointer.traits.optmem}),
otherwise \tcode{to_address(p.operator->())}.
\end{itemdescr}
\rSec2[ptr.align]{Pointer alignment}
\indexlibraryglobal{align}%
\begin{itemdecl}
void* align(size_t alignment, size_t size, void*& ptr, size_t& space);
\end{itemdecl}
\begin{itemdescr}
\pnum
\expects
\begin{itemize}
\item
\tcode{alignment} is a power of two
\item
\tcode{ptr} represents the address of contiguous storage of at least
\tcode{space} bytes
\end{itemize}
\pnum
\effects
If it is possible to fit \tcode{size} bytes
of storage aligned by \tcode{alignment} into the buffer pointed to by
\tcode{ptr} with length \tcode{space}, the function updates
\tcode{ptr} to represent the first possible address of such storage
and decreases \tcode{space} by the number of bytes used for alignment.
Otherwise, the function does nothing.
\pnum
\returns
A null pointer if the requested aligned buffer
would not fit into the available space, otherwise the adjusted value
of \tcode{ptr}.
\pnum
\begin{note}
The function updates its \tcode{ptr}
and \tcode{space} arguments so that it can be called repeatedly
with possibly different \tcode{alignment} and \tcode{size}
arguments for the same buffer.
\end{note}
\end{itemdescr}
\indexlibraryglobal{assume_aligned}%
\begin{itemdecl}
template<size_t N, class T>
constexpr T* assume_aligned(T* ptr);
\end{itemdecl}
\begin{itemdescr}
\pnum
\mandates
\tcode{N} is a power of two.
\pnum
\expects
\tcode{ptr} points to an object $X$ of
a type similar\iref{conv.qual} to \tcode{T},
where $X$ has alignment \tcode{N}\iref{basic.align}.
\pnum
\returns
\tcode{ptr}.
\pnum
\throws
Nothing.
\pnum
\begin{note}
The alignment assumption on an object $X$
expressed by a call to \tcode{assume_aligned}
might result in generation of more efficient code.
It is up to the program to ensure that the assumption actually holds.
The call does not cause the implementation to verify or enforce this.
An implementation might only make the assumption
for those operations on $X$ that access $X$
through the pointer returned by \tcode{assume_aligned}.
\end{note}
\end{itemdescr}
\indexlibraryglobal{is_sufficiently_aligned}%
\begin{itemdecl}
template<size_t Alignment, class T>
bool is_sufficiently_aligned(T* ptr);
\end{itemdecl}
\begin{itemdescr}
\pnum
\expects
\tcode{p} points to
an object \tcode{X} of a type similar\iref{conv.qual} to \tcode{T}.
\pnum
\returns
\tcode{true} if \tcode{X} has alignment at least \tcode{Alignment},
otherwise \tcode{false}.
\pnum
\throws
Nothing.
\end{itemdescr}
\rSec2[obj.lifetime]{Explicit lifetime management}
\indexlibraryglobal{start_lifetime_as}%
\begin{itemdecl}
template<class T>
T* start_lifetime_as(void* p) noexcept;
template<class T>
const T* start_lifetime_as(const void* p) noexcept;
template<class T>
volatile T* start_lifetime_as(volatile void* p) noexcept;
template<class T>
const volatile T* start_lifetime_as(const volatile void* p) noexcept;
\end{itemdecl}
\begin{itemdescr}
\pnum
\mandates
\tcode{T} is an implicit-lifetime type\iref{term.implicit.lifetime.type}
and not an incomplete type\iref{term.incomplete.type}.
\pnum
\expects
\range{p}{(char*)p + sizeof(T)} denotes a region of allocated storage
that is
a subset of the region of storage
reachable through\iref{basic.compound} \tcode{p} and
suitably aligned for the type \tcode{T}.
\pnum
\effects
Implicitly creates objects\iref{intro.object} within the denoted region
consisting of an object \placeholder{a} of type \tcode{T}
whose address is \tcode{p}, and
objects nested within \placeholder{a},
as follows:
The object representation of \placeholder{a}
is the contents of the storage prior to the call to \tcode{start_lifetime_as}.
The value of each created object \placeholder{o}
of trivially copyable type\iref{term.trivially.copyable.type} \tcode{U}
is determined in the same manner as for a call
to \tcode{bit_cast<U>(E)}\iref{bit.cast},
where \tcode{E} is an lvalue of type \tcode{U} denoting \placeholder{o},
except that the storage is not accessed.
The value of any other created object is unspecified.
\begin{note}
The unspecified value can be indeterminate.
\end{note}
\pnum
\returns
% FIXME: We should introduce "a" outside of the \effects clause
A pointer to the \placeholder{a} defined in the \Fundescx{Effects} paragraph.
\end{itemdescr}
\indexlibraryglobal{start_lifetime_as_array}%
\begin{itemdecl}
template<class T>
T* start_lifetime_as_array(void* p, size_t n) noexcept;
template<class T>
const T* start_lifetime_as_array(const void* p, size_t n) noexcept;
template<class T>
volatile T* start_lifetime_as_array(volatile void* p, size_t n) noexcept;
template<class T>
const volatile T* start_lifetime_as_array(const volatile void* p, size_t n) noexcept;
\end{itemdecl}
\begin{itemdescr}
\pnum
\mandates
\tcode{T} is a complete type.
\pnum
\expects
\tcode{p} is suitably aligned for an array of \tcode{T} or is null.
\tcode{n <= size_t(-1) / sizeof(T)} is \tcode{true}.
If \tcode{n > 0} is \tcode{true},
\range{(char*)p}{(char*)p + (n * sizeof(T))} denotes
a region of allocated storage that is
a subset of the region of storage
reachable through\iref{basic.compound} \tcode{p}.
\pnum
\effects
If \tcode{n > 0} is \tcode{true},
equivalent to
\tcode{start_lifetime_as<U>(p)}
where \tcode{U} is the type ``array of \tcode{n} \tcode{T}''.
Otherwise, there are no effects.
\pnum
\returns
A pointer to the first element of the created array,
if any;
otherwise,
a pointer that compares equal to \tcode{p}\iref{expr.eq}.
\end{itemdescr}
\rSec2[allocator.tag]{Allocator argument tag}
\indexlibraryglobal{allocator_arg_t}%
\indexlibraryglobal{allocator_arg}%
\begin{itemdecl}
namespace std {
struct allocator_arg_t { explicit allocator_arg_t() = default; };
inline constexpr allocator_arg_t allocator_arg{};
}