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Abstract

Work in partial satisfaction planning (PSP) has
hitherto assumed that goals are independent thus
implying that they have additive utility values. In
many real-world problems, we cannot make this
assumption. In this paper, we motivate the need
for handling various types of goal utility depen-
dence in PSP. We provide a framework for rep-
resenting them using the General Additive In-
dependence model and investigate two different
approaches to handle this problem: (1) compil-
ing PSP with utility dependencies to Integer Pro-
gramming; (2) extending forward heuristic search
planning to handle PSP goal dependencies. To
guide the forward planning search, we introduce
a novel heuristic framework that combines cost-
propagation and Integer Programming to select
beneficial goals to find an informative heuristic es-
timate. The two implemented planners, iPUD and
SPUDS, using the approaches discussed above,
are compared empirically on several benchmark
domains. While iPUD is more readily amend-
able to handle goal utility dependencies and can
provide bounded optimality guarantees, SPUDS
scales much better.

1 Introduction

Classical planning aims at finding a plan that achieves a set of
conjunctive goals. Partial satisfaction planning (PSP) relaxes
this all-or-nothing constraint, focusing on finding a plan that
achieves the “best” subset of goals (i.e. the plan that gives
the maximum trade-off between total achieved goal utilities
and total incurred action cost). The process of finding goals
on which to focus is complicated by the fact that they in-
teract with one another. For instance, actions may share in
their achievement of goals (positive interaction) or conflict
(negative interaction). These types of interactions introduce
cost dependencies between goals because the cost of achiev-
ing them separately may differ from the cost of achieving
them together. In the existing frameworks, goals only inter-
act through cost dependencies. In this paper we extend PSP
to handle utility dependency which allows users to specify

changes in utility on sets of goals, thereby increasing its ex-
pressive power.

Two concrete examples of utility dependency are mutual
dependency and conditional dependency. For mutual depen-
dency, the utility of a set of goals is different from the sum
of the utility of each individual goal. For example, (1) while
the utility of having either a left or right shoe alone is zero,
utility of having both of them is much higher (i.e. the goals
“complement” each other); (2) utility of having two cars is
smaller than the sum of the individual utilities of having each
one of them (i.e. the goals “substitute” each other). Con-
ditional dependency is where the utility of a goal or set of
goals depend on whether or not another goal or set of goals
is already achieved. For example, the utility of having a ho-
tel reservation in Hawaii depends on whether or not we have
already purchased a ticket to Hawaii.

The main technical challenges in handling utility depen-
dencies are in finding (1) a model where different types of
goal utility dependencies can be compactly expressed and (2)
an approach that effectively combines utility interactions with
cost interactions to find a high quality plan. The primary con-
tribution of our paper is a systematic approach for handling
cost and utility dependencies together in PSP. In particular we
present:

• An approach for representing utility dependencies be-
tween planning goals using the Generalized Additive In-
dependence (GAI) model [Bacchus and Grove, 1995],
combining utility theory and deterministic planning.

• An extension of a state of the art Integer Programming
(IP) planner [van den Briel et al., 2005] to solve this
extended PSP problem.

• A novel heuristic framework combining cost propaga-
tion and an IP encoding to capture mutual dependencies
of goal achievement cost and goal utility. This leads to
informative heuristics used for guiding a variation of a
forward state space search planner.

The two approaches (IP encoding and forward heuristic
search) are implemented, resulting in two planners iPUD and
SPUDS, and tested on several planning benchmark domains.
While the IP approach is more readily amendable to handle
goal utility dependencies and can provide bounded optimal-
ity guarantees, we shall see that the heuristic search method
scale much better.
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2 Problem Formulation

A classical planning problem is a 4-tuple 〈F, I, G, A〉 where:
fluents F are a set of predicate symbols; initial state I is
completely defined by predicates in F ; goal state G is par-
tially defined by a set of predicates in F ; a set of actions
A with a ∈ A are defined by pre- and post-conditions
Pre(a),Add(a),Delete(a) ⊆ F . A plan P is a sequence of
actions that when executed from I achieves all goals g ∈ G.

In partial satisfaction planning (PSP) [Smith, 2004;
van den Briel et al., 2004], goals g ∈ G have utility val-
ues ug ≥ 0, representing how much each goal is worth to
the user; each action a ∈ A has an associated execution cost
ca ≥ 0, representing how costly it is to execute each action
(e.g. amount of time or resources consumed). Let GP ⊆ G
be the set of goals achieved by a plan P . The objective is
to find a plan P that maximizes the difference between total
achieved utility u(GP ) and total cost of all actions a ∈ P
(i.e., plan benefit):

MAX
P

u(GP ) −
∑

a∈P

ca (1)

Work on PSP has until now assumed that goals have
no utility dependencies and thus their utilities are additive:
u(GP ) =

∑
g∈GP

ug . In order to represent the types of

goal utility dependencies discussed in the previous section
(i.e., complement, substitute, conditional), we adopt the Gen-
eralized Additive Independence (GAI) model [Bacchus and
Grove, 1995]. We chose this model because it is expressive,
general and we can compile to it from other commonly used
models such as UCP-Net [Boutilier et al., 2001]. We assume
that the utility of the goal set G can be represented by k local
utility functions fu(Gk) ∈ R over sets Gk ⊆ G. For any
subset G′ ⊆ G the utility of G′ is:

u(G′) =
∑

Gk⊆G′

fu(Gk) (2)

This model allows users to specify changes in utility over
sets of goals. For the rest of this paper, we name the new PSP
problem with utility dependencies represented by the GAI
model PSPUD . If there are |G| local functions fk(Gk) and

each Gk contains a single goal then PSPUD reduces to the
original PSP problem (no utility dependencies).

3 IP Encoding for PSPUD

Since classical planning can be solved by IP, and since IP
provides a natural way to incorporate numeric constraints and
objective functions, it follows that PSPUD planning problems
can be solved by IP as well.

We setup an IP formulation to handle PSPUD problems
by extending the generalized single state change (G1SC) for-
mulation [van den Briel et al., 2005]. Currently, the G1SC
formulation is the most effective IP formulation for solving
classical planning problems, and it outperforms the previ-
ously developed IP formulation used to solve PSP problems
without utility dependencies [van den Briel et al., 2004].

The G1SC formulation represents the planning problem as
a set of loosely coupled network flow problems, where each
network corresponds to one of the state variables in the plan-
ning domain. The network nodes correspond to the state vari-
able values and the network arcs correspond to the value tran-
sitions. The planning problem is to find a path (a sequence of

actions) in each network such that, when merged, they con-
stitute a feasible plan. In the networks, nodes and arcs ap-
pear in layers, where each layer represents a plan period. The
layers are used to solve the planning problem incrementally.
That is, we start by performing reachability analysis to find a
lower bound on the number of layers necessary to solve the
problem. If no plan is found, all the networks are extended
by one extra layer and the planning problem is solved again.
This process is repeated until a plan is found (see [van den
Briel et al., 2005] for a complete description of the G1SC
formulation).

In order to deal with utility dependencies we incorporate
the following extensions to the G1SC formulation:

• In PSPUD problems not all goals have to be achieved
for a plan to be feasible. Therefore, we remove those
constraints from the G1SC formulation which state that
goals must be achieved.

• For each goal utility dependency function Gk we add a
variable zGk

∈ {0, 1}, where zGk
= 1 if all goals in Gk

are achieved, and zGk
= 0 otherwise.

• For each goal utility dependency function Gk we add
constraints to ensure that Gk is satisfied if and only if
all goals g ∈ Gk are achieved, that is:

∑

f,g∈Dc:g∈Gk

yc,f,g,T − |Gk| + 1 ≤ zGk
(3)

zGk
≤

∑

f∈Dc

yc,f,g,T ∀g ∈ Dc : g ∈ Gk (4)

where Dc is the domain of a state variable c,
yc,f,g,T ∈ {0, 1} are variables of the IP problem that
represent value changes in the state variables, and T is
the plan horizon.

• We create an objective function to maximize the net-
benefit (utility minus cost) of the plan.

MAX
∑

Gk

u(Gk)zGk
−

∑

a∈A,1≤t≤T

caxa,t (5)

where u(Gk) represents the utility of satisfying the goal
utility dependency function Gk, and ca represents the
cost of executing action a ∈ A.

The extended G1SC formulation is bounded length opti-
mal (i.e., it generates optimal plans for a plan horizon T ).
Global optimality cannot be guaranteed as there could still be
solutions with higher net benefit at longer plan horizons.

4 Heuristics for Maximizing Plan Benefit

While IP planners are optimal within a bounded horizon,
prior work suggests that heuristic search planners are more
efficient and are able to find better solutions in larger prob-
lems [van den Briel et al., 2004]. For PSPUD problems, the
challenge in computing a heuristic for maximizing plan ben-
efit is that we need to simultaneously (1) pick the best set of
goals and (2) find the best plan for them. While the first chal-
lenge is complicated by the utility dependencies, the second
is complicated by the cost dependencies.

Current heuristic approaches for solving PSP problems in-
volve planning graph based heuristics that handle cost depen-
dencies by providing an estimate of the cost for achieving
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each goal. The heuristics then use the goals’ defined utility
values to select goal subsets that offer the best net benefit on
the estimated cost. In this scenario goals have no dependen-
cies on one another. In PSPUD we must deal with the fact that
both cost dependencies between actions and utility dependen-
cies between goals exist.

In this section we define our search algorithm along with
three heuristics that combine planning graph methods with
a declarative IP encoding. We generate an IP encoding over
the relaxed plan heuristic rather than the entire problem as
discussed in Section 3. By solving the IP encoding, we select
a goal set along with an estimated cost for achieving it. Our
main innovation is the combination of a relaxed plan that
handles cost interactions between goals and a declarative IP
encoding that captures both mutual goal achievement cost
and goal utility dependencies.

Best-First Heuristic Search for PSPUD : To handle PSPUD ,
we use the best-first anytime heuristic search framework in
SapaPS [van den Briel et al., 2004]. This forward metric
temporal planner uses an anytime variation of the A∗ algo-
rithm guided by a heuristic derived from the relaxed planning
graph. Like A∗, this algorithm starts with the initial state
Sinit and continues to dequeue from the open-list the most
promising node S (i.e. highest f(S) = g(S) + h(S) value).
For each search node S, g(S) represents the benefit achieved
so far by visiting S from Sinit and h(S) represents the pro-
jected maximum additional benefit gained by expanding S,
with plan benefit defined in Section 2. Though calculating
g(S) is trivial, having a good estimate of h(S) is hard and key
to the success of best-first search algorithms. During explo-
ration of the search tree the algorithm, which is called A∗

PSP ,
keeps outputting better quality plans whenever a node S with
the best-so-far g(S) value is expanded. Like A∗, the algo-
rithm terminates when a node S with h(S) = 0 is picked
from the top of the open list.

Though A∗
PSP can keep all generated search nodes,

in practice SapaPS prunes the search space by removing
nodes that that appear unpromising (i.e., nodes where
the estimated benefit is negative). Though this improves
efficiency, one potential drawback is that when the heuristic
h(S) underestimates the value of a search node S, then S
will be discarded (when compared to the benefit of the best
solution found so far g(SB)) even if it can be extended to
reach a better solution. To mitigate this issue, we modified
the SapaPS search strategy to keep some search nodes that
appear unpromising when first generated. During search we
set a value ε as half the distance between the best node found
so far SB and the worst-valued unpromising node. For each
unpromising search node S that is within a threshold ε of
the current best solution, we find ρ, the complement of the
percentage distance between it and the benefit of SB (i.e.
g(SB)). We then keep S with probability ρ.

Goal Achievement Cost Propagation: In all of our heuristic
methods we estimate the cost C(g) to achieve each goal [Do
and Kambhampati, 2004]. Starting with C(f) = 0 for facts
f in the initial state I and C(f) = C(a) = ∞ for all other
facts and all actions, the propagation rules to estimate costs

to achieve facts p and to execute actions a are1:

• Facts: ∀f : C(f) = MIN
f∈Add(a)

(C(a) + ca)

• Either:

1. Max-prop: ∀a ∈ A : C(a) = MAX
f∈Pre(a)

C(f); or

2. Sum-prop: ∀a ∈ A : C(a) = Σ
f∈Pre(a)

C(f)

The update rules are used while extending the (relaxed)
planning graph structure [Blum and Furst, 1997]. After
the propagation is done (i.e., no costs change), C(g) is an
estimate on the cost to achieve g for each goal g ∈ G.

Deriving Heuristics from Propagated Costs: We will use
the notation hx

y to name our heuristics. Here x is the method
used to estimate the goal utilities and y is the method used to
estimate the goal costs. If utilities and costs are independent,
both x and y can be “sum”. The dependencies between goal
utilities can be estimated using the GAI model while the de-
pendencies between goal costs can be estimated using relaxed
plans.2

It is easy to observe that if we use max propagation (max-
prop), then C(g) will underestimate the cost to achieve g
while there is no such guarantee for sum propagation (sum-
prop) [Bonet et al., 1997]. Using C(g) calculated by the cost
propagation process outlined in the previous section, we can
estimate the achievable benefit value as below:

hGAI = MAX
G′⊆G

[u(G′) − (MAX
g∈G′

C(g))] (6)

Notice that, as part of our heuristic, we the calculate the
local utility functions as defined in Equation 2. As such,
our heuristic directly applies the GAI model. If we use
max-prop, then Equation 6 will give the hGAI

max heuristic
and if we use sum-prop, it will give a corresponding hGAI

sum

heuristic. While hGAI
max overestimates the real achievable

benefit, there is no such guarantee for hGAI
sum . Thus A∗

PSP

using hGAI
max is guaranteed to output an optimal solution given

enough time.

Relaxed Plan based Heuristic: Because hGAI
max can signif-

icantly over-estimate the real benefit of achieving a set of
goals, it performs badly in some domains (as we shall see).
The hGAI

sum heuristic, while more informative, relaxes the cost
interaction and assumes that plans achieving different goals
are independent and do not overlap. To improve on those two
heuristics, we adapt the relaxed plan heuristic, first introduced
in the FF planner [Hoffmann and Nebel, 2001], that solves
the planning problem ignoring the delete list. This heuristic
improves over hGAI

sum by taking into account actions contribut-
ing to the achievement of several goals. The challenge in ex-
tending it to PSPUD is how to efficiently find a high-benefit

1
ca, which is the execution cost of a, is different from C(a),

which is the cost to enable the execution of a (i.e., costs to achieve
preconditions of a)

2Given this notation, we can view the heuristic used in
SapaPS [Do and Kambhampati, 2004] as h

sum

relax because it sums
the individual goal utilities and extracts a relaxed plan to estimate
cost.
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relaxed plan in the presence of both cost and utility depen-
dencies.

Let GP+ ⊆ G be the set of goals achieved by the relaxed
plan P+. The relaxed plan heuristic for PSPUD is:

h∗ GAI
relax = MAX

P+
u(GP+) −

∑

a∈P+

ca (7)

Note that Equation 7 looks like Equation 1 except that the
optimal plan P in Equation 1 is replaced by the optimal re-
laxed plan P+ (i.e. achieving maximum benefit) in Equa-
tion 7. h∗ GAI

relax overestimates the real achievable benefit and
can be used as an admissible heuristic in A∗

PSP to find the
optimal solution for PSP problems.

While finding a satisfying relaxed plan P+ for any given
goal set GP+ ⊆ G is polynomial, extracting h∗ GAI

relax requires
finding an optimal relaxed plan (highest benefit). This task is
NP-hard even when we already know the optimal goal set
G∗

P+ and actions have uniform cost [Bylander, 1994]. To

approximate h∗ GAI
relax for PSPUD we use the following three

steps. The first step was introduced in SapaPS while the
second and third steps are novel:

1. Greedily extract a low cost relaxed plan P+ that
achieves the largest set of achievable goals.

2. Capture the achievement cost dependencies between
achievable goals using the causal structure of P+.

3. Pose the problem of extracting the optimal subplan
within P+ that takes both cost and benefit dependen-
cies into account as an IP encoding. A solution hGAI

relax

of this IP encoding is used to estimate h∗ GAI
relax.

Notice that if we compile the entire relaxed planning graph
(rather than just the greedily extracted relaxed plan) we can
post the problem of finding h∗ GAI

relax as an IP problem. Despite
its conceptual elegance, we chose not to follow this route as
the cost of heuristic computation increases significantly (es-
pecially for our progression planner which extracts a relaxed
plan at each node).

Step 1: Heuristically Extract a Low Cost Relaxed Plan

Let G′ ⊆ G be the set of all achievable goals (C(g) < ∞), we
use the planning graph and the propagated achievement costs
in Section 4 to heuristically extract a low-cost relaxed plan to
support G′ as follows:

1. Start with supported facts SF = I , subgoal set SG =
G′ \ I and the relaxed plan P+ = ∅.

2. For each g ∈ SG select a supporting action
a : g ∈ Add(a) with lowest execution cost C(a) value.
Update: P+ ← P+∪{a}, SG ← SG∪(Pre(a)\SF )
and SF ← SF ∪ Add(a).

3. Repeat until SG = ∅.

This backtrack-free process is guaranteed to finish in time
polynomial in the number of actions.

Step 2: Build Cost Dependencies within P+

Because certain actions contribute to the achievement of
multiple goals, there are dependencies between the costs to
achieve them. Those relations can be discovered by using the
causal structure of the extracted relaxed plan P+.

To capture the mutual dependencies between the goal
achievement costs, we find the set of actions shared between
different partial plans achieving different goals. This proce-
dure utilizes the causal links in the relaxed plan P+.

1. Initialize: ∀a ∈ P+ : GS(a) = ∅;
∀ p ∈ Add(a)

⋃
Prec(a) : GS(p) = ∅;

∀ g ∈ G : GS(g) = {g}.

2. Backward sweep from goals achieved by P+ and update
until fix-point:
GS(a) =

⋃
p∈Add(a)

GS(p); GS(p) =
⋃

p∈Pre(a)

GS(a)

Using the procedure above, for each action a, GS(a) con-
tains the set of goals g that a contributes to, where the goal-
supporting sets GS(a) represents the achievement cost de-
pendencies between goals.

Step 3: Estimate the Maximum Achievable Benefit
In this step, we combine the goal supporting set GS(a) found
in the previous step with the goal utility dependencies fu to
find the most beneficial relaxed plan P ′ within P+. One sim-
ple approach to find this plan P ′ ⊆ P+ is to iterate over

2|GP+ | subsets G′ ⊆ GP+ of goals, with GP+ is the set
of goals achieved by P+, and compare the benefit of plans
P ′ achieving G′. However, when |G| is large this approach

becomes impractical.3 Therefore, we use a declarative ap-
proach of setting up an IP encoding with solution represent-
ing the most beneficial relaxed plan P ′ ⊆ P+. Note that
while IP is generally slow for solving a complete planning
problem, the number of actions in the relaxed plan is much
smaller (by several orders) than the number of actions in the
(relaxed) planning graph. This allows us to find an optimal
solution in reasonable time. This is critical because we will
build an IP encoding for each search node generated during
forward heuristic search. The IP formulation that we set up
is very similar to the one described in Section 3 but it only
allows actions that are in the relaxed plan and it does not
create constraints for negative interactions. Moreover, addi-
tional constraints representing the goal supporting set GS(a)
found in the previous step are also included to enforce that if
a given goal g is selected, then any action that contributes to
the achievement of g should also be selected. Specifically:

• Binary Variables:

– ∀a ∈ P, ∀g ∈ G, ∀Gk ⊆ G, fu(Gk) = 0: create
one binary integer variable Xa, Xg, XGk

.

• Constraints:

– ∀a ∈ P, ∀g ∈ GS(a) : (1 − Xg) + Xa ≥ 1
–

∑
g∈Gk

(1 − Xg) + XGk
≥ 1

– ∀g ∈ Gk : (1 − XGk
) + Xg ≥ 1

• Objective: MAX (
∑

fu(Gk) ∗ XGk
− ΣXa ∗ ca)

Solving this IP encoding gives the benefit value of the most
beneficial relaxed plan P ′ within P+. The benefit of this P ′

plan can be used as a hGAI
relax heuristic to guide A∗

PSP .4

3In the empirical section, we test with problems used in the plan-
ning competition, which can have more than 40 goals.

4We use similar IP encoding to derive the heuristic estimates for
h

GAI
max and h

GAI
sum as described in the earlier part of this section.
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5 Empirical Results

We have implemented the heuristic framework on top of the
SapaPS planner along with the extension to the G1SC en-
coding discussed in Section 3. We call the new planners
SPUDS and iPUD and compare (1) iPUD; (2) SPUDS with
three heuristics (hGAI

relax, hGAI
max , and hGAI

sum ); and (3) a version

of SapaPS whose heuristic ignores the goal utility dependen-
cies (but whose g-value does not)

iPUD runs with CPLEX 10.0, a commercial LP solver,
while we use lp solve version 5.5 (a free solver with a Java
wrapper) to solve the IP encodings in SPUDS. We found
that lp solve, while less powerful than CPLEX, has a shorter
setup time and is more suitable for SPUDS, which sets up
an IP encoding at every search node. All tests use a P4
2.66GHz/1GB RAM computer with a 600 second time limit.
SPUDS and SapaPS continuously find better solutions until
a termination criterion is met.

Test Problems: We automatically generated the PSPUD

problems from a subset of the propositional planning bench-
marks used in IPC3 and IPC5: In Zenotravel, airplanes move
people between cities; in Satellite, satellites turn to objects
and take pictures; in Rovers, sets of rovers navigate to take
samples and images; and in TPP, trucks visit markets to buy
products.

For each domain, we implemented a Java program that
parses the original problem files and generates the PSPUD

version with action cost and goal utilities randomly generated
within appropriate upper and lower bounds. The set of goal
dependencies along with their utility values are also randomly
generated. Thus, the number of dependencies, size of the de-
pendencies, set of goals involved, utility values and action
costs are all selected within varied lower and upper bounds
for each domain. All goals are soft, and therefore planners
can trivially solve each problem with the null plan.

We varied our bounds on action cost and goal set utility
values such that each domain focuses on different aspects
of utility dependency. In Zenotravel, ending a plan with
people at various locations increases utility significantly. But
flying a person from one location to another has a cost that
is only slightly less than the individual utilities of achieving
each goal. Thus, it is vital to have sets of people at their
desired location. In TPP, purchasing items has a cost about
equivalent to the individual utility of having the item. How-
ever, having items together can change the utility of a plan
considerably. The idea is to simulate the benefit of having
several items together (e.g., to build a crate you need wood,
nails, a hammer and saw). The Satellite domain removes
the emphasis on cost. Here actions have costs lower than
the comparatively higher benefit of having several images
together (e.g., to produce a mosaic image). The domain also
adds negative goal utility dependencies (i.e., substitution) by
including negative utility for having certain sets of images
yet ending a plan by pointing to an inconvenient spot.5 The
Rovers domain focuses on substitution as having certain

5In this case we group the goal of having certain images along
with a final ending position as a dependency with a randomly gen-
erated negative utility.

scientific data together gives redundant information and
therefore removes a large portion of utility gained by having
them separately.

Analysis: The empirical evaluation is designed to: (1) com-
pare the effectiveness of the IP-based and heuristic search
approaches in solving PSPUD problems; (2) determine the
characteristics of PSPUD planning problems which cause our
approaches to return plans of differing quality.

Our results in Figure 1 show the plan quality achieved by
each planning method and the time to reach that quality. On
problems where only the null plan was found, we indicate
the extensive search for a better plan by setting the time to
600 seconds. For every other instance, the time that the best
plan was found is shown. As the figure shows, the tested
approaches varied in their relative plan quality on each do-
main but SPUDS using the hGAI

relax heuristic always performed
among the best.

First, we observe the planner behavior in Zenotravel and
TPP. Both of these domains involve gathering objects, though
Zenotravel focuses on delivering these objects as well. Util-
ity dependencies play an important role in these domains, and
we see that SapaPS does poorly, while the SPUDS heuristics
and iPUD fared much better. Since the SapaPS heuristic is
not informed about utility dependencies, this comes as no sur-
prise. In easier problems, the hGAI

sum heuristic tends to return
plans of similar or equal quality as compared with the other
techniques used. However, as problem size increases, hGAI

sum

begins to return plans of better quality, but still does worse
than hGAI

relax in terms of the overall number of plans found with
best quality. With iPUD, as the size of the problem encoding
increases it is unable to find a good feasible solution.

For our version of the Satellite domain, some goal combi-
nations remove utility from the overall quality of plans. Also,
the plans of higher quality tend to require many actions. This
can be seen in the quality of the plans that iPUD returns. Its
reachability analysis is unable to properly estimate the dis-
tance to goals and it therefore begins its solution searching
at a small horizon. For the hGAI

relax heuristic, it turns out that
action selection helps guide search toward the goals.

For the Rovers domain, iPUD does well on several prob-
lems. However, like in the Satellite domain, it turns out that
better quality plans require a larger horizon on some of the
problems than its initial horizon provides. This gives SPUDS
with the hGAI

relax heuristic an edge over iPUD in 8 of the 20

problems. The heuristics hGAI
sum and hGAI

max have information
regarding utility dependencies, though hGAI

sum often performs
worse than hGAI

relax (solving 5 of 20 problems with better qual-

ity plans) and hGAI
max is only able to find the null plan in every

problem instance. Neither of these heuristics can detect the
individual dependencies between actions.

Also of interest is the time it takes to solve each problem
between the heuristic search methods and the IP encoding
used in iPUD. Since the SPUDS heuristics solve an IP encod-
ing at each search node, they take much longer to compute on
larger problems than the procedural SapaPS heuristic. Un-
fortunately, SapaPS lacks the heuristic guidance necessary
to properly select goals with utility dependencies. Though we
found that the per-node IP encoding of hGAI

relax increased the
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Figure 1: The problem results. For each domain we show the results of the problems solved (with later problems within the
domain having increasing difficulty). The top graph shows the quality of the solutions found and the bottom graph shows the
time taken to find the solutions for each of our approaches.

amount of time spent per search node by 3 to 200 times over
that of SapaPS (with the highest increases on larger prob-
lems), SPUDS with the hGAI

relax heuristic does better overall.

When reaching the time limit (600 seconds for our results),
SapaPS , SPUDS and iPUD return their best solution. In
SPUDS and SapaPS this behavior comes from the best first
anytime search and with iPUD this behavior comes from the
CPLEX solver, which can return the best feasible solution
found within a given time limit. Insights can be obtained by
observing the amount of time it takes to find the solution that
is eventually returned. We used the anytime behavior to il-
lustrate the scalability of each approach. Figure 2 shows, of
problems 10 through 20 in each domain (i.e., the most diffi-
cult), which each technique performs best in terms of quality
throughout their search (e.g., hGAI

relax has the best quality for 16

of the problems at 2 seconds). Of our approaches, hGAI
relax per-

forms the best overall. In the 80 tested problems, it solves 22
instances at 600 seconds better than any other planner. Also
interesting is that in 45 instances it obtains the best plan of the
approaches or one of similar quality (by “similar” we mean
within 0.1% of the best solution). Figure 3 shows an exam-
ple of the anytime behavior in a typical problem (Zenotravel
problem 13). We can see that all of the SPUDS heuristic ap-
proaches quickly find a high quality plan, iPUD continues to
improve its solution until the time limit, and SapaPS is only
able to find a poor quality plan.

6 Related Work

There has been work on PSP problems using orienteering
to select goal subsets by David Smith (2004). Also, van
den Briel et. al. (2004) introduced several planners such as
AltAltps , SapaPS , and OptiP lan that tackle PSP by either
greedily selecting goals up-front, heuristically searching for
solutions, or compiling the problem into IP. None of those

0

5

10

15

20

0 100 200 300 400 500 600

Time (seconds)

#
 p

ro
b

le
m

s
 w

it
h

 b
e
s
t 

q
u

a
li

ty GAI relax GAI max
GAI sum SapaPS
iPUD

Figure 2: The number of highest quality solutions found dur-
ing anytime search by each planner from problems 10 through
20 in the domains.

planners deal with the utility dependencies we described. The
most recent International Planning Competition [Gerevini et
al., 2006] included problems with preferences that involved
indicating costs on plans that failed to meet preferred con-
straints. Also, PrefPlan [Brafman and Chernyavsky, 2005]

can find optimal plans with preferences between goals.

Besides the GAI model that we used to represent the util-
ity dependencies, there are several other attractive models
such as UCP-Net [Boutilier et al., 2001] and the graphical
model [Bacchus and Grove, 1995]. While both provide a
graphical representation that can make it easier for users to
understand the dependencies, the GAI model is more general
and these modelling methods can be compiled into GAI. We
also note that PDDL3 can represent GAI utility dependencies,
albeit in an unnatural way.6

It is possible to solve PSP problems by modelling them as
MDPs [Boutilier et al., 1999] and extracting a solution from

6We can represent utility by compiling it into “positive cost” that
a PDDL3 metric maximizes.
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Figure 3: Zenotravel, Problem 13 anytime behavior for each
of the planners.

an optimal policy. However, past experiments have shown
this approach fails to scale well even when solving prob-
lems without utility dependencies on state-of-the-art MDP
solvers [Do and Kambhampati, 2004].

While we are not aware of work on using an IP encoding
in combination with a greedy search for a planning heuristic
as in this paper, there has been work on using IP encoding
to handle a subset of planning constraints involving continu-
ous resource or temporal variables [Wolfman and Weld, 1999;
Long and Fox, 2003b].

7 Conclusion

In this paper, we showed how the GAI framework can be
used to represent utility dependencies in planning problems
and introduced both a heuristic search framework and an IP
encoding for solving partial satisfaction problems with utility
dependencies (PSPUD ). Though we saw variation in the per-
formance of the planners, SPUDS using the hGAI

relax heuristic
typically did better than the other methods shown. Perfor-
mance of the hGAI

relax heuristic indicates that high quality re-
laxed plan computation can involve significant computation
effort, but the extra guidance received pays off more than
when lower-quality methods are used. We also see that while
IP approaches solve these types of problems, they may have
difficulty scaling in problem size. They also typically find
solutions at a slower rate than heuristic-based approaches as
observed from iPUD’s performance over time.

We plan to extend this work further to combine both the
quantitative preferences of PSP with qualitative models as
handled in planners like [Brafman and Chernyavsky, 2005].
We are also considering extensions to our model that handle
preferences like those seen in the most recent International
Planning Competition (IPC5) [Gerevini et al., 2006]. To
improve the performance, we plan on investigating more
effective admissible heuristics that more aggressively take
into account negative interactions, such as residual cost as
described in AltWlt [Nigenda and Kambhampati, 2005] to
improve the heuristic quality.
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