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Abstract

The complexity of existing planners is bounded by
the length of the resulting plan, a fact that limits
planning to domains with relatively short solutions.
We present a novel planning algorithm that uses the
causal graph of a domain to decompose it into sub-
problems and stores subproblem plans in memory
as macros. In many domains, the resulting plan
can be expressed using relatively few macros, mak-
ing it possible to generate exponential length plans
in polynomial time. We show that our algorithm
is complete, and that there exist special cases for
which it is optimal and polynomial. Experimental
results demonstrate the potential of using macros to
solve planning domains with long solution plans.

1 Introduction

Most successful planners exploit structure in a planning do-
main to generate valid plans. In particular, factored planners
exploit independence within a domain to decompose the do-
main into several subproblems that can be solved indepen-
dently and combined to produce a global plan. Hierarchical
planners factor domains into a hierarchy of increasingly ab-
stract subproblems [8; 9]. Other factored planners solve each
subproblem separately and coordinate the solutions to pro-
duce a coherent global plan [1; 4; 6; 10].

The causal graph underlying a planning domain appears to
capture relevant information about domain structure. Jonsson
and Bäckström [7] proved that plan existence is polynomial
in a class of domains with acyclic causal graphs, although the
plans may have exponential length. Brafman and Domshlak
[3] designed a polynomial-time algorithm for plan generation
in domains whose causal graphs are polytrees with bounded
indegree. Helmert [5] used causal graph analysis to design an
efficient heuristic for planning.

We present a novel algorithm for plan generation in a sub-
class of domains with unary operators and acyclic causal
graphs. Just like other factored planners, the algorithm de-
composes a planning domain into several subproblems. How-
ever, unlike other planners, partial plans generated in a sub-
problem are stored in memory as macros. In subsequent sub-
problems, the algorithm retrieves macros from memory and
uses them as part of the solution. We show that the algorithm

is complete, i.e., it always generates a plan if one exists. In
addition, the algorithm is optimal for a subclass of domains.

Our algorithm takes a dynamic programming approach to
planning: instead of solving the same subproblem repeatedly,
solve the subproblem once and cache the resulting partial plan
in memory. Whenever the solution is needed, retrieve the par-
tial plan from memory. In many domains, this approach dra-
matically reduces the complexity of generating valid plans. In
addition, macros generated in one domain can be stored and
reused in similar domains. If approximation techniques are
used that require backtracking, macros can retain the solution
to some subproblems when a deadend is reached.

Helmert [5] showed that the structure of a planning domain
becomes much more explicit when the domain is represented
using multi-valued variables. Since we share this view and
want to exploit structure, we use the SAS+ formalism [2] to
represent planning domains using multi-valued variables. We
show that for a subset of domains in our class, our algorithm
runs in polynomial time. Experimental results demonstrate
the utility of our algorithm and verify theoretical results.

Brafman and Domshlak [4] suggested that factored plan-
ning is likely to work well in domains with limited local depth
whose causal graph has limited tree-width. Informally, the
local depth is the minmax number of times any state vari-
able has to change its value on a valid plan. Our algorithm
provably solves Tower of Hanoi in polynomial time, a do-
main whose local depth is exponential in the number of state
variables and whose causal graph has maximal tree-width.
The algorithm computes the transitive reduction of the causal
graph, which often has much smaller tree-width. In addition,
exponential length plans can be expressed using relatively
few macros, drastically reducing the local depth.

2 Notation

We define a SAS+ planning domain instance as a tuple P =
〈V, s0, c∗, A〉, where:

• V = {v1, . . . , vn} is a set of state variables, each with
finite domain D(vi). Let DC = ×vi∈CD(vi) be the
joint domain of a subset C ⊆ V of variables. A context
c ∈ DC is an assignment of values to variables in C; c
assigns the value c[vi] ∈ D(vi) to each vi ∈ C. A capi-
talized context denotes its associated subset of variables.
A state s ∈ DV assigns a value to each variable in V.

IJCAI-07
1936



v

v

v

v
v

1 3

2 4

5

v

v

v

v
v

1 3

2 4

5

Figure 1: An acyclic causal graph and its transitive reduction

• s0 is an initial state.

• c∗ is a goal context.

• A = {a1, . . . , am} is a set of operators of the form ak =
〈prek,postk,prvk〉, where the contexts prek, postk,
and prvk denote the pre-, post- and prevail-condition of
operator ak, respectively. For each operator ak ∈ A,
Prek = Postk and Prek ∩ Prvk = ∅.

We define two operations on contexts. Let fW(c) be the pro-
jection of context c onto the subset W ⊆ V of state variables.
The result of fW(c) is a context x such that X = C∩W and
x[vi] = c[vi] for each vi ∈ X. Also, let c⊕w be the compo-
sition of contexts c and w. The result of c⊕w is a context x
such that X = C ∪ W, x[vi] = w[vi] for each vi ∈ W and
x[vi] = c[vi] for each vi ∈ C−W. Note the asymmetry; the
right operand overrides the values of the left operand.

An operator ak ∈ A is applicable in state s if fPrek
(s) =

prek and fPrvk
(s) = prvk. The result of successfully ap-

plying ak in state s is s⊕ postk. We add a dummy operator
a∗ to A whose prevail-condition equals the goal context c∗.

In this paper, we study the restricted class of SAS+ do-
mains that satisfy the following two definitions:

Definition 2.1 A planning domain P has unary operators if,
for each operator ak ∈ A, |Prek| = 1.

For a planning domain with unary operators, we can form the
set Ai = {ak ∈ A | Prek = {vi}} of operators that affect
state variable vi ∈ V. The causal graph of a planning domain
with unary operators is a graph with one node per state vari-
able. There is a directed edge between state variables vj and
vi if there is an operator ak ∈ Ai such that vj ∈ Prvk.

Definition 2.2 A planning domain P is tree-reducible if its
causal graph is acyclic and the transitive reduction of the
causal graph is a tree, i.e., weakly connected with no undi-
rected cycles and with all edges pointing towards the root.

The transitive reduction of a graph only retains edges nec-
essary to maintain connectivity, and is unique for acyclic
graphs. Figure 1 illustrates the causal graph and its transi-
tive reduction for a planning problem in our restricted class.

3 A planning algorithm

We present an algorithm that uses macros to solve planning
domains in our restricted class. The algorithm divides a plan-
ning domain into n subproblemsPi, i = 1, . . . , n. Let Ci de-
note the set of state variables of subproblem Pi. Ci contains
vi as well as all ancestors of vi in the causal graph. Without
loss of generality, assume that v1, . . . , vn is a topological sort
of the nodes. Since the transitive reduction graph is a tree,

vn is a descendant of each other node, so Cn = V, and Pn

corresponds to the original domain P . Our algorithm solves
the subproblems bottom-up starting with P1.

Let Mi be the set of macros that our algorithm generates in
subproblem Pi, and let Pai ⊂ V be the set of parent nodes
of vi in the transitive reduction of the causal graph. The set
of operators of subproblem Pi is Oi = Ai ∪ (∪vj∈Pai

Mj),
i.e., operators that affect vi and macros generated in parent
subproblem Pj for each parent node vj ∈ Pai.

Definition 3.1 In subproblem Pi, a macro is a tuple mi =
〈cx

i , op, cy
i 〉, composed of an initial context cx

i , an operator
sequence op ∈ O∗

i , and a goal context c
y
i .

We use superscript to distinguish between contexts that assign
values to the same subset of state variables, in this case Ci.
A macro is associated with a specific initial context even if its
operator sequence could be applied in other contexts.

The idea of introducing macros in subproblemPi is to cap-
ture all relevant subplans involving state variable vi and its
ancestors. A subplan is relevant precisely when it satisfies
the prevail-condition of an operator that affects a descendant
of vi. To determine relevant subplans, we project the prevail-
conditions of such operators onto Ci. Let Zi be the set of
contexts z, |Z| ≥ 1, that equal the projected prevail-condition
fCi

(prvk) of some operator ak ∈ Aj , j > i.
Our algorithm constructs the domain graph of Ci in which

nodes are contexts in DCi
. Let the initial context be fCi

(s0),
the initial state projected onto Ci. When we visit a context
ci, we add edges to the graph for each operator ak ∈ Ai such
that prek = ci[vi]. For each parent vj ∈ Pai, we determine
the set of macros mj = 〈fCj

(ci), op, cj〉 ∈ Mj such that
fPrvk

(cj) = fCj
(prvk). Each such macro starts in ci and

ends in a context that satisfies the prevail-condition of ak.

Since the transitive reduction of the causal graph is a tree,
the parent nodes of vi have no common ancestors. Conse-
quently, applying a macro generated in parent subproblemPj

has no impact on the values of state variables in other parent
subproblems. To achieve the prevail-condition of ak, we can
apply the macros of parent subproblems in any order. For
each combination of parent macros, we add an edge from ci

to cx
i in the domain graph, where cx

i is the context that results
from applying each of the parent macros followed by ak. The
weight of the edge equals the total length of the operator se-
quences of the macros plus one, the cost of applying ak.

We use Dijkstra’s algorithm to traverse the domain graph
in order of shortest paths. We only add nodes and edges
to the graph as necessary, never representing the complete
graph. Consequently, the algorithm only visits contexts that
are reachable from fCi

(s0). For each context, we record the
shortest operator sequence for reaching it from fCi

(s0). Di-
jkstra ensures that the algorithm always finds the shortest op-
erator sequence in O∗

i for reaching a context.

At a context ci, we use the projected prevail-conditions to
determine macros. We find each projected prevail-condition
z ∈ Zi such that either vi /∈ Z or z[vi] = ci[vi]. For each par-
ent vj ∈ Pai, we find each macro mj = 〈fCj

(ci), op, cj〉 ∈
Mj such that fZ(cj) = fCj

(z). For each combination of
parent macros, let cx

i be the context that results from apply-
ing the parent macros starting in ci, and let opm ∈ O∗

i be
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Algorithm 1: MACROPLANNER(P)

1 for each i = 1, . . . , n
2 Ci ← set of vi and its ancestors
3 Mi ← ∅
4 L ← list containing projected initial state fCi

(s0)
5 while L is non-empty
6 ci ← remove first context in L
7 construct the domain graph of Ci starting at ci

8 H ← hash table mapping contexts to operator sequences
9 run Dijkstra and record macros from ci in H

10 for each 〈cx

i , op〉 ∈ H
11 append the macro 〈ci, op, cx

i 〉 to Mi

12 if c
x

i not previously visited
13 append c

x

i to L
14 if no macro generated to projected goal context
15 stop; there is no valid plan

the corresponding sequence of macros. Let opc ∈ O∗
i be the

shortest operator sequence for reaching ci from fCi
(s0), and

let 〈opc, opm〉 denote opc followed by opm. If 〈opc, opm〉 is
the shortest operator sequence for reaching cx

i so far, gener-
ate a macro 〈fCi

(s0), 〈opc, opm〉, cx
i 〉 in Mi, replacing any

previous macro to cx
i . The algorithm may construct a macro

from a context to itself with operator sequence length 0.
For each context ci such that ci is the goal context of any

macro generated by our algorithm, we repeat Dijkstra with
ci as the initial context. If it is not possible to reach the
projected goal context fCi

(c∗) from ci, we can remove all
macros whose goal context equals ci. If it is not possible
to reach the projected goal context from the projected initial
state, there exists no valid global plan.

Algorithm 1 summarizes our planner for domains in the
restricted class. To ensure constant-time lookup, we use
hash tables to store operators, projected prevail-conditions
and macros. In subproblem Pn, Cn = V, so the projected
initial state fV(s0) = s0 corresponds to the initial state itself.
The only projected prevail-condition is that of the dummy op-
erator a∗, which equals fV(c∗) = c∗. Any macro in Mn

starts in s0 and ends in a state s such that fC∗
(s) = c∗. Thus,

the macro in Mn with shortest operator sequence corresponds
to the optimal global plan.

3.1 Example

We illustrate our algorithm using an example domain. Let
V = {v1, . . . , v5} with D(vi) = {0, 1} for each vi ∈ V. Let
the initial state be s0 = (0, 0, 0, 0, 0), and let the goal context
be c∗ = (v3 = 0, v4 = 0, v5 = 1). Assume that the causal
graph of the domain is the one illustrated in Figure 1, and that
there are two operators in A5:

a1
5 = 〈v5 = 0, v5 = 1, (v3 = 1, v4 = 1)〉,

a2
5 = 〈v5 = 1, v5 = 0, (v1 = 0, v2 = 0)〉.

Assume that M3 and M4 contain the following macros:

m1
3 = 〈(v1 = 0, v3 = 0), op1, (v1 = 0, v3 = 1)〉,

m2
3 = 〈(v1 = 0, v3 = 0), op2, (v1 = 1, v3 = 1)〉,

0,0,0,0,0

0,0,1,1,1

1,0,1,1,1

0,0,1,1,0
1

1
0,0,0,0,1

1,0,0,0,1

3

4 2

2

Figure 2: The domain graph for subproblem P5

m3
3 = 〈(v1 = 0, v3 = 1), op3, (v1 = 0, v3 = 0)〉,

m4
3 = 〈(v1 = 1, v3 = 1), op4, (v1 = 1, v3 = 0)〉,

m1
4 = 〈(v2 = 0, v4 = 0), op5, (v2 = 0, v4 = 1)〉,

m2
4 = 〈(v2 = 0, v4 = 1), op6, (v2 = 0, v4 = 0)〉,

where len(opi) = 1 for i = 1, 3, . . . , 6 and len(op2) = 2.
Figure 2 illustrates the domain graph for subproblem P5

that our algorithm constructs. The algorithm starts in the pro-
jected initial state (0, 0, 0, 0, 0). There is one operator in A5

whose pre-condition equals v5 = 0, namely a1
5. Two macros

in M3, m1
3 and m2

3, satisfy the prevail-condition v3 = 1 of
a1
5. One macro in M4, m1

4, satisfies the prevail-condition
v4 = 1 of a1

5. That gives us two possible combinations of
parent macros: 〈m1

3, m
1
4〉 and 〈m2

3, m
1
4〉. Applying 〈m1

3, m
1
4〉

followed by a1
5 has total length 3 and results in the state

(0, 0, 1, 1, 1). Applying 〈m2
3, m

1
4〉 followed by a1

5 has total
length 4 and results in the state (1, 0, 1, 1, 1). The algorithm
adds the corresponding edges and nodes to the domain graph.

The only projected prevail-condition in Z5 is that of the
dummy operator a∗, which equals the goal context c∗.
At (0, 0, 1, 1, 1), there is one macro in M3, m3

3, that sat-
isfies v3 = 0, and one macro in M4, m2

4, that satis-
fies v4 = 0. The only possible combination of parent
macros is 〈m3

3, m
2
4〉 with total length 2 and resulting in state

(0, 0, 0, 0, 1). Consequently, the algorithm adds a macro from
(0, 0, 0, 0, 0) to (0, 0, 0, 0, 1) with operator sequence length 5.
At (1, 0, 1, 1, 1), the only combination of parent macros that
satisfy c∗ is 〈m4

3, m
2
4〉, resulting in a macro from (0, 0, 0, 0, 0)

to (1, 0, 0, 0, 1) with length 6. At (0, 0, 1, 1, 1), it is also pos-
sible to apply operator a2

5, resulting in the state (0, 0, 1, 1, 0),
but that does not lead to a state satisfying a projected prevail-
condition. Note how the algorithm never represents most of
the 25 = 32 possible states.

4 Completeness and optimality

In this section, we prove that our algorithm is complete, i.e.,
it always generates a valid plan if one exists. In addition,
our algorithm is optimal, i.e., it always generates the shortest
possible valid plan.

Definition 4.1 A context ci matches a projected prevail-
condition z ∈ Zi if fZ(ci) = z.

Definition 4.2 Let cx
i →i c

y
i denote that there exists an op-

erator sequence in O∗
i from a context cx

i to a context c
y
i .

Let Gi, i = 1, . . . , n, be the subset of contexts that appear
either as the initial context or the goal context of at least one
macro in Mi. In other words, for each context cx

i ∈ Gi, there
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exist op ∈ O∗
i and c

y
i ∈ DCi

such that 〈cx
i , op, cy

i 〉 ∈ Mi or
〈cy

i , op, cx
i 〉 ∈ Mi.

First, we prove that the macros generated by our algorithm
correspond to the shortest operator sequences for reaching a
context that matches a projected prevail-condition.

Lemma 4.3 For each context cx
i ∈ Gi and each context c

y
i ,

if cx
i →i c

y
i and c

y
i matches a projected prevail-condition

z ∈ Zi, our algorithm generates a macro 〈cx
i , op, cw

i 〉 ∈ Mi

such that cw
i matches z and such that op ∈ O∗

i is part of a
shortest operator sequence from cx

i to c
y
i .

Proof By induction on i. For i = 1, the set of applicable op-
erators is O1 = A1. Since |Z| ≥ 1 for each z ∈ Z1, a context
c

y
1 matches z if and only if c

y
1 = z. Dijkstra is guaranteed

to find a shortest path to any context that is reachable from
cx
1 , corresponding to an operator sequence in A∗

1. Hence, if
cx
1 →1 c

y
1 and c

y
1 matches z, our algorithm generates a macro

〈cx
1 , op, cy

1〉 ∈ M1 such that op ∈ O∗
1 is a shortest operator

sequence from cx
1 to c

y
1 .

For i > 1, if |Pai| = 0, the proof is analogous to i =
1. For |Pai| > 0, we first treat the case that vi ∈ Z and
cx

i [vi] = z[vi]. If cx
i matches z, the algorithm generates a

macro 〈cx
i , ∅, cx

i 〉 ∈ Mi, and trivially ∅ is part of a shortest
operator sequence from cx

i to c
y
i . Otherwise, for some parent

nodes vj ∈ Pai, it must be that fCj
(z) ∈ Zj . Since our

algorithm only uses macros in Mj to change the values of
state variables in Cj , it follows that fCj

(cx
i ) ∈ Gj for each

such vj ∈ Pai. We can remove any operators not affecting
state variables in Cj from the operator sequence cx

i →i c
y
i to

obtain fCj
(cx

i ) →j fCj
(cy

i ). Since c
y
i matches z, it must be

that fCj
(cy

i ) matches fCj
(z).

By hypothesis of induction, for each such parent node vj ∈
Pai, our algorithm generates a macro 〈fCj

(cx
i ), opj , cj〉 ∈

Mj such that cj matches fCj
(z) and opj is part of a short-

est operator sequence from fCj
(cx

i ) to fCj
(cy

i ). As a conse-
quence, our algorithm generates a macro 〈cx

i , op, cw
i 〉 ∈ Mi,

where cw
i is the context that results from applying all such

parent macros in sequence. Since the goal context cj of each
parent macro matches fCj

(z), it follows that cw
i matches

z. Since opj is part of a shortest operator sequence from
fCj

(cx
i ) to fCj

(cy
i ), it follows that op is part of a shortest

operator sequence from cx
i to c

y
i .

In case vi ∈ Z and cx
i [vi] = z[vi], the operator sequence

cx
i →i c

y
i must include operators in Ai to change the value

of vi from cx
i [vi] to z[vi]. Our algorithm adds edges from cx

i

for each operator ak ∈ Ai such that prek = cx
i [vi]. For

some parent nodes vj ∈ Pai, fCj
(prvk) ∈ Zj , and we

know that fCj
(cx

i ) ∈ Gj . For each context cj such that
fCj

(cx
i ) →j cj and that matches fCj

(prvk), by induction
our algorithm generates a macro 〈fCj

(cx
i ), opj , c

w
j 〉 ∈ Mj

such that cw
j matches fCj

(prvk) and opj is part of a shortest

operator sequence from fCj
(cx

i ) to cj .
As long as the projection onto Cj remains within Gj for

each parent node vj ∈ Pai, our algorithm is guaranteed to
add edges for each applicable operator ak ∈ Ai. If an oper-
ator sequence achieves the prevail-condition prvk of an op-
erator ak ∈ Ai at a context cw

j /∈ Gj , it follows by induction
that our algorithm generates a macro to a context that matches
prvk and that is on the shortest path to cw

j . Thus, it is never

possible to construct a shorter path from cx
i to c

y
i by leav-

ing Gj . In particular, whatever context we use to achieve the
prevail-condition of the last operator in Ai, there is a context
on the shortest path whose projection onto Cj is in Gj . As
a result, our algorithm generates a path in the domain graph
from cx

i to a context cw
i such that cw

i [vi] = z[vi] and cw
i is

on the shortest path from cx
i to c

y
i . Since fCj

(cw
i ) ∈ Gj for

each parent node vj ∈ Pai, we can use the reasoning from
the case cx

i [vi] = z[vi] to prove the lemma.
In case vi /∈ Z, it is not necessary to change the value of

vi to satisfy z. This is analogous to the case vi ∈ Z, cx
i [vi] =

z[vi]. However, it is possible to construct tasks such that the
optimal plan satisfies z in a context that assigns a different
value to vi. For this reason, our algorithm constructs macros
to contexts that match z for each value of vi. In this case, the
proof is analogous to the case vi ∈ Z, cx

i [vi] = z[vi].

Theorem 4.4 (Completeness and optimality) If there ex-
ists a valid global plan, our algorithm generates the optimal
global plan.

Proof The set of state variables of subproblem Pn is Cn =
{v1, . . . , vn} = V. Unless Mn is empty, at least one macro
must start at the projected initial state fV(s0) = s0, in which
case s0 ∈ Gn. The only projected prevail-condition of sub-
problem Pn is that of the dummy operator a∗, which equals
fV(c∗) = c∗. Any valid global plan is a sequence of oper-
ators from s0 to a state s that matches c∗, which means that
s0 →n s. For each such state s, it follows from Lemma 4.3
that our algorithm generates a macro 〈s0, op, sw〉 ∈ Mn such
that sw matches c∗ and op is part of a shortest operator se-
quence from s0 to s. One of these macros must correspond to
the optimal global plan.

5 Complexity

In subproblem Pi, the complexity of generating macros is
polynomial in the size of the domain graph that our algorithm
constructs. In the worst case, the size of the domain graph is
exponential in the number of ancestors of vi. In many cases,
however, the size of the domain graph is much smaller. In
particular, there is one case for which the complexity of our
algorithm is provably polynomial.

Theorem 5.1 Assume that for each i = 1, . . . , n, the prevail-
condition of each operator in Ai specifies a value for each an-
cestor of vi. Then the proposed algorithm runs in polynomial
time with complexity O(|V||A|3).

Proof For each value d ∈ D(vi) in the domain of vi, let
Ad

i = {ak ∈ Ai | postk = d} be the set of operators that
change the value of vi to d. Since prevail-conditions spec-
ify a value for each ancestor, it follows that vi ∈ Z for each
z ∈ Zi. Let Zd

i = {z ∈ Zi | z[vi] = d} be the set of pro-
jected prevail-conditions that specify the value d for vi. Any
context in the domain graph that specifies the value d for vi

has to either match the prevail-condition of an operator in Ad
i

or a projected prevail-condition in Zd
i . Since each prevail-

condition specifies values for each preceding state variable,
only a single context matches each prevail-condition. The
number of projected prevail-conditions is bounded by the
number of operators, so the number of nodes in the domain
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Figure 3: Transitive reduction graph with outdegree > 1

graph is O(
∑

d∈D(vi)
|Ad

i | + |Zd
i |) = O(|Ai| + |Zi|) =

O(|Ai| + |A|) = O(|A|).
The complexity of Dijkstra is quadratic in the number

of nodes in the domain graph, or O(|A|2). We may have
to repeat Dijkstra for each context that satisfies a projected
prevail-condition. There can be at most |A| such contexts.
Consequently, the complexity of generating macros in sub-
problem Pi is O(|A||A|2) = O(|A|3). The total complexity
of our algorithm is O(

∑n

i=1 |A|3) = O(|V||A|3).

6 Extending the algorithm

So far, we presented an algorithm that generates optimal
plans in tree-reducible planning domains. In this section,
we discuss an extension to domains whose transitive reduc-
tion graphs are polytrees. Unlike trees, polytrees may not be
weakly connected and have unbounded outdegree. We can
apply the algorithm to each weakly connected group of state
variables, but unbounded outdegree is more challenging.

Consider the following domain, with V = {v1, v2, v3}
and D(v1) = {0, 1, 2}, D(v2) = D(v3) = {0, 1}. The
initial state is s0 = (0, 0, 0), the goal context is c∗ =
(v2 = 1, v3 = 1), and A contains the following operators:

a1
1 = 〈v1 = 0, v1 = 1, ∅〉,

a2
1 = 〈v1 = 0, v1 = 2, ∅〉,

a1
2 = 〈v2 = 0, v2 = 1, v1 = 1〉,

a1
3 = 〈v3 = 0, v3 = 1, v1 = 2〉.

Figure 3 shows the causal graph of the domain, identical to
its transitive reduction in this case. From the point of view
of state variable v2, it is possible to set v2 to 1: apply a1

1 to
change v1 from 0 to 1, followed by a1

2 to change v2 from 0 to
1. From the point of view of v3, it is possible to set v3 to 1 by
applying a2

1 followed by a1
3. Nevertheless, there is no valid

plan that solves the domain, and our algorithm is currently
unable to handle this case.

Williams and Nayak [10] required that operators are re-
versible, i.e., that other operators can reverse their effect.

Definition 6.1 A polytree-reducible planning domain P is
branch-decomposable if, for each vi with outdegree > 1 in
the transitive reduction graph, each mj ∈ Oi is reversible.

Let vi be a state variable with outdegree > 1 in the transitive
reduction graph. The definition requires each operator that
affects vi as well as each parent macro of vi to be reversible.
In other words, changing the values of state variables in Ci

does not prevent some future context ci from occuring. Thus,
it is safe to decompose the planning domain as before and

v1 v2 v3 v4 v5

v1 v2 v3 v4 v5

Figure 4: The causal graph and transitive reduction of ToH

solve each branch downstream from vi separately. The con-
text ci that results from solving one branch becomes the ini-
tial context of the solution to the next branch. This guarantees
completeness, but not optimality.

As an example, consider the same planning domain as
above, but with the following two additional operators:

a3
1 = 〈v1 = 1, v1 = 0, ∅〉,

a4
1 = 〈v1 = 2, v1 = 0, ∅〉.

Since there are no parent macros, each operator ak ∈ O1 is
reversible, so the new domain is branch-decomposable. First,
consider the solution to the branch containing v2. This solu-
tion is the same as before: apply a1

1 to change v1 from 0 to
1, followed by a1

2 to change v2 from 0 to 1. The resulting
context v1 = 1 becomes the initial context of the solution to
the branch containing v3. To change v3 to 1, it is necessary
to apply a3

1 and a2
1 to change v1 from 1 to 0 to 2, followed by

a1
3 to change v3 from 0 to 1. Note that it is perfectly possible

to solve the branches in opposite order.

7 Experimental results

To test our algorithm, we ran experiments in two domains:
Tower of Hanoi (ToH) and a modified version of GRIPPER.
ToH can be modeled as a SAS+ instance with one state vari-
able per disc. The domain of each state variable is the three
pegs that each disc can occupy. For each disc, there are six
operators for moving the disc between each pair of pegs, each
with a prevail-condition on the location of each smaller disc.
Figure 4 shows the causal graph and transitive reduction of
ToH with 5 discs. The transitive reduction is a chain from the
smallest to largest disc, i.e., ToH is tree-reducible. In addi-
tion, each operator affecting a state variable vi has a prevail-
condition on each ancestor of vi, so it follows from Theorem
5.1 that our algorithm solves ToH in polynomial time.

The results of the experiments in ToH appear in Table
1. We varied the number of discs in increments of 10 and
recorded the running time of our algorithm across 100 trials.
The table also shows the number of macros generated by our
algorithm, and out of those, how many were used to represent
the resulting global plan. For example, 27 out of 82 gener-
ated macros formed part of the solution to ToH with 10 discs.
Since the solution to ToH requires a number of operators ex-
ponential in the number of state variables, any algorithm that
generates a complete operator sequence has exponential com-
plexity. In contrast, our algorithm is able to quickly generate a
macro that compactly represents the optimal plan. Naturally,
executing the resulting plan has exponential complexity.

GRIPPER was one of the domains used at the first plan-
ning competition at AIPS 1998. Since our algorithm requires
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DISCS TIME (ms) MACROS LENGTH

10 31 ± 14 27/82 > 103

20 84 ± 29 57/172 > 106

30 161 ± 32 87/262 > 109

40 279 ± 37 117/352 > 1012

50 457 ± 40 147/442 > 1015

60 701 ± 20 177/532 > 1018

Table 1: Results in Tower of Hanoi

unary operators, we assume unlimited load capacity of the
robot. In this case, GRIPPER can be modeled as a SAS+ in-
stance with one state variable, v1, representing the location of
the robot and one state variable for each ball, representing the
location of that ball. Operators for picking and dropping balls
have prevail-conditions on the robot’s location, so the transi-
tive reduction graph is a polytree (cf. Figure 3 for two balls).
In other words, GRIPPER is polytree-reducible, and only v1

has outdegree > 1. Assuming that the robot can reach any
location from any other location, GRIPPER is also branch-
decomposable. Thus, it is possible to solve GRIPPER using
macros by transporting one ball at a time to the goal location.

We modified GRIPPER such that instead of two rooms, the
environment consists of a maze with 967 rooms. To transport
balls, the robot must navigate through the maze to the goal
location. The robot can only pick balls at the initial location
and drop them at the goal location. The results of the experi-
ments appear in Figure 2. The resulting plans are not optimal
since the robot could carry all balls at once. However, the ex-
periments illustrate that although the resulting solution length
is linear in the number of balls, our algorithm only needs to
generate macros once for moving through the maze. If the
algorithm is extended to handle non-unary operators, macros
can generate a large advantage in domains such as this.

8 Conclusion

We have presented an algorithm that uses macros to gener-
ate valid plans for a subclass of planning domains with unary
operators and acyclic causal graphs. The algorithm is com-
plete for all domains in the class and optimal for a subclass
of domains. Macros make it possible to generate exponential
length plans in polynomial time by storing partial plans in
memory that can be reused as many times as necessary. This
opens up new possibilities for solving classes of planning do-
mains that were previously thought to be intractable.

The complexity of the algorithm depends on the size of
local transition graphs constructed by the algorithm, which
in turn depends on the number of macros generated in other
subproblems. The current version of the algorithm generates
macros indiscriminately, many of which are never used as
part of a global plan. A possible improvement of the algo-
rithm would be to use inference to distinguish useful macros
from superfluous ones.

Another possible extension is to consider domains with
non-unary operators and whose causal graphs are not acyclic.
Helmert [5] describes a strategy for approximating acyclic
causal graphs by excluding some prevail-conditions of oper-

BALLS TIME (ms) MACROS LENGTH

100 1528± 86 2/5 ≈ 300 × 100

101 1535± 86 12/14 ≈ 300 × 101

102 1570± 86 102/104 ≈ 300 × 102

103 2906± 143 1002/1004 ≈ 300 × 103

Table 2: Results in GRIPPER

ators. In some cases, this leads to deadends, in which case it
is necessary to backtrack and include some of the excluded
prevail-conditions. Macros are useful in this case since they
retain partial plans in subproblems, obviating the need to gen-
erate a completely new plan from scratch. If the SAS+ repre-
sentation included a notion of objects, it would be possible to
generate macros for one object and share those macros among
identical objects. Finally, macros generated in one domain
could be stored and reused in other domains.
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