
Malcolm Ryan

Centre for Autonomous Systems

University of New South Wales

Australia 2052

malcolmr@cse.unsw.edu.au

Abstract

In my previous paper (Ryan, 2006) I introduced the
concept of subgraph decomposition as a means of
reducing the search space in multi-robot planning
problems. I showed how partitioning a roadmap
into subgraphs of known structure allows us to first
plan at a level of abstraction and then resolve these
plans into concrete paths without the need for fur-
ther search so we can solve significantly harder
planning tasks with the same resources. However
the subgraph types I introduced in that paper, stacks
and cliques, are not likely to occur often in realistic
planning problems and so are of limited usefulness.

In this paper I describe a new kind of subgraph
called a hall, which can also be used for planning
and which occurs much more commonly in real
problems. I explain its formal properties as a plan-
ning component and demonstrate its use on a map
of the Patrick’s container yard at the Port of Bris-
bane in Queensland Australia.

1 Introduction

Coordinated path planning for multiple robots is difficult be-
cause the search space grows combinatorially with the num-
ber of robots (LaValle, 2006). We need to plan not only for
the paths of individual robots but also for the ordering of their
movements to prevent them from colliding with one another.
Often it is necessary for robots to detour away from their
shortest paths in order to let other robots pass. As a result
centralised planning methods (eg Barraquand & Latombe,
1991), which plan for all robots at once, have traditionally
been abandoned in favour of prioritised planners which plan
for only one robot at a time in priority order (Erdmann &
Lozano-Pérez, 1986; LaValle & Hutchinson, 1998; Berg &
Overmars, 2005). Collisions are avoided by requiring lower
priority robots to plan to avoid those of higher priority. This is
much faster since the search space is kept relatively small but
can be incomplete. It is not difficult to construct a problem
for which there is no prioritised solution.

In my previous paper (Ryan, 2006) I proposed a way to
perform centralised planning in a much more efficient man-
ner by dealing with the problem at a higher level of abstrac-
tion. If we partition the map into a set of connected subgraphs

then we can first of all plan for the movement of the robots
between the subgraphs and then resolve these abstract plans
into sequences of more concrete steps. If the subgraphs we
use have well-chosen structure then this abstraction will sig-
nificantly reduce the size of the search space, and the resolu-
tion process can be done deterministically without the need
for further search.

The subgraphs that I have previously described, stacks and
cliques, work well for illustrating this idea but are seldom
found in real planning problems. In this paper I introduce a
more complex kind of subgraph called a hall which is much
more common in real planning problems. I explain its struc-
ture and its formal properties below and I shall demonstrate
its value by using it to do multi-robot planning on a real
problem: moving cargo-handler robots around a map of the
Patrick container yard at Port Brisbane.

2 Problem Formulation

We assume for this work that we are provided with a road-
map in the form of a graph G = (V, E) representing the con-
nectivity of free space for a single robot moving around the
world. We consider our robots to be homogeneous so a single
map suffices for them all.

We make some further simplifying assumptions about the
map:

• The map is constructed such that two robots will only
collide if they try to simultaneously occupy the same
vertex in the graph. That is, the vertices must be spaced
sufficiently far apart that two robots can occupy any pair
of distinct vertices without colliding.

• A robot at vertex vi can move to neighbouring vertex vj

provided vj is unoccupied and no other robot is simulta-
neously entering or leaving vj . Robots occupying other
vertices in the graph do not affect this movement.

• The initial and goal locations of all robots lie on the
roadmap.

With appropriate levels of underlying control these assump-
tions should not be too difficult to achieve or approximate for
most problems.

We also have a set of robots R = {r1, . . . , rk}, and two
mappings S0, S

+ : R → V representing the initial and goal
positions of the robots respectively, with S[ri] �= S[rj] iff i �=

Graph Decomposition for Efficient Multi-robot Path Planning

IJCAI-07
2003

Algorithm 1 Planning on the reduced graph

function PLAN(G, X, R, S0, S+)
Pr ← ∅,∀r ∈ R
≺← ∅
for r ∈ R do

G0[r] ← G ∈ G, s.t. S0[r] ∈ G
end for
P ← PLAN(G, X, R, P , G0, S+)
for G ∈ G do

P ← G.RESOLVE(P)
end for
return P

end function

function PLAN(G, X, R, P , G, S+)
if ∀r : S+[r] ∈ G[r] then

for r ∈ R do
P ← G[r].TERMINATE(P , r, S+[r])

end for
return P

end if
choose r ∈ R
Gf ← G[r]
choose Gt ∈ {G′ | (Gf , G′) ∈ X}
choose (vf , vt) ∈ {(x, y) ∈ G|x ∈ Gf , y ∈ Gt}
P ← Gf .EXIT(P , r, vf)
P ← Gt.ENTER(P , r, vt)
add (vf , vt) to Pr

G[r] ← Gt

return PLAN(G, X, R, P , G, S+)
end function

j. Given this information we wish to construct a set of plans
P = {Pr | r ∈ R} for each robot to reach its goal. We also
construct a partial-ordering ≺ between plan steps so that two
robots can never occupy the same the vertex of the map.

2.1 Subgraph Planning

At this stage a naive centralised planner would proceed as fol-
lows: First, initialise every robot at its starting position, then
select a robot and move it to a neighbouring vertex, check-
ing first that no other robot is currently occupying that ver-
tex. Continue in this fashion selecting and moving one of
the robots at each step until all robots are at their goals. Of
course, each choice presents multiple possibilities and all al-
ternatives have to be searched in some systematic fashion,
usually by breadth-first or A∗ search.

Subgraph planning proceeds in a similar fashion, as illus-
trated in Algorithm 1. Before we begin the map G is parti-
tioned into a collection of subgraphs G = {G0, G1, . . . , Gm}
and then a minor X of G is constructed by contracting each
subgraph to a single vertex;

V (X) = G
E(X) = {(Gi, Gj) | ∃x ∈ Gi, y ∈ Gj : (x, y) ∈ E(G)}

Given this partitioning the planning algorithm proceeds as
before. We initialise the robots in their starting positions and
then search through a sequence of steps. Each step consists
of selecting and moving one of the robots, but in this case we
consider how the robot might be moved from the subgraph it

currently occupies to one of its neighbours in X . This is more
complex than in the naive planner. When we attempt to move
a robot from one subgraph to another we must first check that
it is possible to do this without forcing any of the other robots
within the subgraph to exit. Similarly, we must check that the
robot can validly enter the neighbouring subgraph. Rearrang-
ing robots within the subgraph is permissible but movement
between subgraphs must only occur as a deliberate plan step.

Once a robot has reached the target subgraph in which its
goal vertex lies it must also check that is is possible for it to
terminate there. It may be that other robots within the sub-
graph prevent it from reaching its goal location without any
robots exiting the subgraph.

Thus for each subgraph structure we use, we need to im-
plement three test methods used in the search progress:

• ENTER(P , r, v) Test if robot r can enter a vertex v in the
subgraph.

• EXIT(P , r, v) Test if robot r can exit the subgraph via
vertex v.

• TERMINATE(P , r, v) Test is robot r in the subgraph can
move to its goal vertex v.

The key to efficient subgraph planning is to carefully con-
strain the allowed structure of the subgraphs in our partition,
so that the ENTER, EXIT and TERMINATE methods are sim-
ple to implement, and do not require expensive search. The
advantage of this approach is that each of these functions can
always be computed based only on the arrangement of other
robots within that particular subgraph and do not rely on the
positions of robots elsewhere.

If these three methods are correctly implemented then once
a subgraph-based plan has been found, we can guarantee that
there is a concrete resolution of this plan into edge transitions
in G which fits this abstraction. Furthermore, if no subgraph
plan can be found then no concrete plan exists either, as every
concrete plan has an abstract representation1 and our search
algorithm is complete.

When subgraph planning is complete, we need an addi-
tional method:

• RESOLVE(P) To resolve an abstract plan of en-
ter/exit/terminate events into a concrete sequence of
movements between vertices.

Under our assumptions stated earlier, we can resolve the
movements of robots within one subgraph without reference
to robots elsewhere. So we can implement a RESOLVE

method for each subgraph type which performs this opera-
tion. Once again, the key is to choose our subgraph structure
so that this method can be implemented efficiently without
the need for additional search.

1The proof of this statement is rather long and will be published
in a forthcoming journal paper. The fundamental idea is that a con-
crete plan can be divided into sections of subgraph rearrangement
interleaved with transition actions whenever a robot moves from one
subgraph to another. Each transition becomes an step in the abstract
plan.

IJCAI-07
2004

vkv3v1 v2

Figure 1: A graph containing a hall subgraph.

3 Subgraph structures

What, then, are these ‘subgraph structures’ that allow effi-
cient subgraph planning? Previously I have described the use
of stacks and cliques as subgraphs. A stack is a chain of ver-
tices with only a single exit at one end. Robots can only en-
ter and leave a stack in a last-in-first-out order. Cliques are
fully-connected subgraphs and may have many exits to other
subgraphs from different vertices. Because every vertex in a
clique is connected to every other, robots can move in and
out of a clique in arbitrary order as long as the clique never
becomes full.

The ENTER and EXIT methods for these types of sub-
graphs are so simple because they place very strong con-
straints on the structure of the subgraph and its connections
to other subgraphs. Unfortunately, for this reason, these
kinds of subgraphs rarely occur in realistic planning prob-
lems. We therefore need to find other structures that are
complex enough to represent real problems, yet still simple
enough to implement efficiently. The hall is such a structure.

3.1 The Hall Subgraph

A hall (Figure 1) is a generalisation of a stack to include mul-
tiple entrance and exit points along its length. Formally it is
an induced subgraph H ⊆ G consisting of a chain of ver-
tices V (H) = {v1, . . . , vk} each linked to its two neighbours
without any ‘shortcuts’, ie:

(vi, vj) ∈ E(H), iff |i − j| = 1, ∀vi, vj ∈ V (H)

As its name suggests, we may imagine a hall as a long narrow
passageway with multiple exits along its length. The passage
is too narrow for robots to pass one another, so the sequence
of robots within the hall will constrain which exits can be
used by a given occupant at a particular time.

To implement the four planning methods ENTER, EXIT

and TERMINATE, RESOLVE for halls, we need to keep track
of the sequence of robots within the hall at any given mo-
ment, including not just their names but also their order (but
not, importantly, their actual vertices). I shall denote this se-
quence as S =

〈
r(1), r(2), . . . , r(n)

〉
. For each method, I shall

now describe how it depends on and affects S.

ENTER()

When a robot r enters the hall, we can compute the possible
sequences this creates. If the robot enters at vertex vi of a hall
of length k which already contains n < k robots in sequence
S, then the resulting sequence can be of the form:

insert(S, r, j) =
〈
r(1), . . . , r(j), r, r(j+1), . . . , r(n)

〉

CB

D

A

v3v2v1 v4 v5 v6

CBA

D

v3v2v1 v4 v5 v6

A B C

D

v3v2v1 v4 v5 v6

j = 0

j = 1

j = 2

Figure 2: Example of entering a hall subgraph, with n =
3, k = 6 and i = 3. Robot D can enter at three possible
sequence positions j = 0, 1 or 2 but not at j = 3

for any j satisfying:

j ≥ max(0, n − k + i)
j ≤ min(n, i − 1)

If several different values of j are possible then the planner
must consider all of these alternatives sequences in the ongo-
ing plan, as they may lead to different outcomes. An example
is shown in Figure 2.

EXIT()

Similarly, the position that a robot occupies in the sequence
S determines which edges it can use when exiting the hall. If
robot r(j) wants to exit from a hall of length k, then it can do
so only via edges which connect to a vertex vi with:

i ≥ j
i ≤ k − n + j

This constraint limits which of the neighbouring subgraphs
can be entered by this robot at a particular time.

TERMINATE()

We can terminate the robots in the hall provided that the se-
quence S matches the sequence termination positions. That
is, if r(i), r(j) ∈ S with i < j terminate at va and vb respec-
tively then we must have a < b.

RESOLVE()

To resolve a subgraph plan which uses a particular hall we
need to know three pieces of information:

1. The list of robots which entered and exited the hall,

2. The edges by which they entered and exited,

3. The sequence positions at which they entered.

IJCAI-07
2005

Given this information we can construct a concrete plan by
moving the robots on an as-needs basis. When a robot enters
we shuffle the existing occupants left or right as necessary to
open up a gap at the appropriate sequence position and we
move the newcomer into this gap. When a robot leaves we
shuffle the robots appropriately so that it will be at the right
vertex from which to depart. None of this requires any kind
of search and we are guaranteed that it will succeed because
of the checks already done in the ENTER and EXIT methods.

Finally, when we have processed all the entrances and ex-
its the remaining robots should be in the correct sequence to
terminate. We can now just move each one to its terminal
position, shuffling any that are in the way further up the hall
(close to their own terminating positions).

3.2 Complexity

The ENTER and EXIT methods for a hall are both O(m)
where m is the number of different sequence positions per-
mitted by the formulae above, which is guaranteed to be less
than or equal to the size of the hall |H |. TERMINATE is O(1),
amortised over all robots in the hall and the RESOLVE method
adds a further O(h) term, where h is the number of visits to
the hall. Since each subgraph must be resolved in this fash-
ion, this post-processing takes extra time equal to the sum of
the lengths of the robots’ plans.

4 Experiments

To evaluate the advantage of planning with the hall subgraph
structure, I applied it to a large realistic planning task. A
map of the Patrick port facility at Port Brisbane in Queens-
land was provided by the company (Figure 3). This map is
used by their computer system to plan the movements of auto-
mated straddle carriers - large vehicles which transport ship-
ping containers around their yards. Efficient planning of co-
ordinated paths for these vehicles is important for the smooth
running of the facility.

The map is an undirected graph of 1808 vertices and 3029
edges. The vertices are naturally connected in long straight
chains representing the roads around the facility. These roads
mean that the vertices can be partitioned into 40 hall sub-
graphs, with only 2 vertices left over, which must be treated
as singletons (Figure 4). The reduced graph has 187 edges
connecting neighbouring subgraphs.

This reduced graph was constructed by hand with the aid
of a simple interactive tool. Choosing the partition was not
difficult; the roads around the port are obvious in the map and
provide a natural set of halls. No effort was made to optimise
this partition in any fashion to suit the algorithm.

Using this map, I ran the following experiment: N robots
were placed in the graph at randomly selected vertices. To
force some amount of interaction, each robot was then re-
quired to move to the starting location of the next robot in
the list, with the final robot moving to the location of the
first. Two plans were constructed, one using a naive cen-
tralised planner and one using the subgraph planner. Both
planners performed a best-first search of the plan space using
a distance heuristic based on the all-shortest-paths matrix for
a single robot in the map.

Figure 4: The reduced map. Each vertex represents a single
subgraph.

The experiment was repeated 200 times each for values of
N from 2 to 10 and the median running time was calculated2.
These values are plotted in Figure 5. Medians are shown
rather than means, as in some cases the planners failed due
to lack of memory. Such instances are treated as having an
infinite running time. Figure 6 shows the percentage of cases
which ran out of memory for each planner, exceeding the 1Gb
limit placed on the heap.

As can be seen from these two graphs, the naive planner
works more efficiently on small problems (due to the extra
overhead of subgraph planning) but quickly blows up as the
number of robots is increased, taking much more time and
memory. Subgraph planning is able to handle significantly
larger problems with many more robots before its search
space also becomes too large.

With regard to plan length, the use of best-first search
meant neither planner was designed to achieve optimality and
outcomes were mixed. In some cases by keeping to the halls
the subgraph planner produced much shorter plans. In other
cases poorly chosen sequencing decisions meant that these
plans were much longer. Work is in progress to construct sen-
sible measures of the length of an abstract plan and heuristics
to estimate the cost to completion so that A* search can be ap-
plied to the abstract planning problem, to optimise the lengths
of plans. Nevertheless we feel that it is better to be producing
a sub-optimal plan quickly than to search for an optimal plan
and fail.

2Running times were measured on a 3.20GHz Intel(R)
Xeon(TM) CPU running Sun JDK 5.0 with 1Gb of heap.

IJCAI-07
2006

Figure 3: A map of the Patrick port facility at Port Brisbane.

5 Related Work

Hierarchical planning has been applied to path-planning be-
fore with abstractions such as approximate cell decompo-
sition (Barbehenn & Hutchinson, 1995), (Conte & Zulli,
1995), generalised Voronoi graphs (Choset & Burdick, 1995),
and general ad-hoc hierarchical maps (Zivkovic, Bakker, &
Kröse, 2006), but the structures identified in these examples
do not carry over well to the multi-robot scenario.

In the domain of task-planning the discovery and use
of well-defined subproblems has shown recently popularity
(Long & Fox, 2002; McCluskey & Simpson, 2004). The sub-
graphs I describe here may be considered ‘generic types’ for
the multi-robot planning domain.

6 Conclusion and Further work

Abstraction has always been a valuable tool in improving the
efficiency of planning, but the difficulty is in finding a good
abstraction that is (i) commonly occurring, (ii) easy to recog-
nise and represent and (iii) easy to reason about. In the do-
main of multi-agent path planning the hall subgraph is such

an abstraction. Halls can be found in many different kinds of
graphs and are especially common in maps of man-made do-
mains such as corridors and roads. In domains such as these,
it is relatively easy to identify halls by hand but the structure
is also simple enough that automatic partitioning should not
difficult to implement.

I have shown how this structure allows us to do planning in
a large real world domain with many robots, where a naive
centralised planner without abstraction rapidly runs out of
memory. The key to this improvement is the efficient imple-
mentation of the ENTER, EXIT, TERMINATE and RESOLVE

methods. This improvement is available without having to
sacrifice completeness, unlike other solutions such as priori-
tisation.

That said, there is no reason why this abstraction should
be incompatible with prioritised planning. A prioritised sub-
graph planner would have the advantage that plans could re-
main abstract until plans were constructed for all robots. By
delaying some of the conflict resolution to the resolution step,
the could allow the planner to produce a wider range of plans

IJCAI-07
2007

2 3 4 5 6 7 8 9 10

robots

1

10

100

1000

10000

100000
T

im
e

(m
s)

Naive
Subgraphs

Figure 5: Median running times for planning in the port map.
With more than three robots the naive algorithm ran out of
memory before completing the task, so no result is shown.

than a naive prioritised planner. I intend to investigate this
possibility as future work.

Another avenue for improvement would be to examine
the symmetries created by the subgraph representation. Re-
cent work in symbolic task-planning (Porteous, Long, & Fox,
2004) has shown that recognising and exploiting symmetries
and almost-symmetries in planning problems can eliminate
large amounts of search. Subgraph configurations provide a
natural ground for similar work in our problem domain and
we expect similar improvements are possible.

Acknowledgements

I wish to thank Daniel Pagac and the people at Patrick for
providing me with the map data used in this project.

References

Barbehenn, M., & Hutchinson, S. (1995). Efficient search and
hierarchical motion planning by dynamically maintain-
ing single-source shortest paths trees. IEEE transac-
tions on robotics and automation, 11(2), 198-214.

Barraquand, J., & Latombe, J.-C. (1991). Robot motion plan-
ning: A distributed representation approach. Int. Jour-
nal of Robotics Research, 10(6), 628-649.

Berg, J. van den, & Overmars, M. (2005). Prioritized Motion
Planning for Multiple Robots. In Proc. Int. Conf. on
Intelligent Robots and Systems (p. 430-435).

Choset, H., & Burdick, J. (1995). Sensor based plan-
ning. I. The generalized Voronoi graph. Robotics and
Automation, 1995. Proceedings., 1995 IEEE Interna-
tional Conference on, 2.

Conte, G., & Zulli, R. (1995, April). Hierarchical path plan-
ning in a multi-robot environment with asimple navi-
gation function. IEEE Transactions on Systems, Man
and Cybernetics, 25(4), 651-654.

Erdmann, M., & Lozano-Pérez, T. (1986). On Multiple Mov-
ing Objects (Tech. Rep. No. 883). M.I.T. AI Lab.

2 3 4 5 6 7 8 9 10

robots

0

10

20

30

40

50

60

70

80

90

100

%
 fa

ile
d

Naive
Subgraph

Figure 6: The percentage of planning tasks which exceeded
the 1Gb memory limit.

LaValle, S. M. (2006). Planning Algorithms. Cambridge
University Press.

LaValle, S. M., & Hutchinson, S. A. (1998). Optimal Mo-
tion Planning for Multiple Robots Having Independent
Goals. In IEEE Trans. on Robotics and Automation
(Vol. 14).

Long, D., & Fox, M. (2002). Planning with generic types.
In G. Lakemeyer & B. Nebel (Eds.), Exploring Arti-
ficial Intelligence in the New Millenium (p. 103-138).
Morgan Kaufmann.

McCluskey, T. L., & Simpson, R. (2004). Knowledge For-
mulation for AI Planning. In A. E.Motta N.Shadbolt &
N.Gibbins (Eds.), Engineering knowledge in the age of
the semantic web (p. 449 - 465). Springer.

Porteous, J., Long, D., & Fox, M. (2004). The Identifica-
tion and Exploitation of Almost Symmetry in Planning
Problems. In K. Brown (Ed.), Proc. of the 23rd UK
Planning and Scheduling SIG.

Ryan, M. R. K. (2006). Multi-robot path planning with sub-
graphs. In Proc. of the 19th Australasian Conference
Robotics and Automation.

Zivkovic, Z., Bakker, B., & Kröse, B. (2006). Hierarchical
Map Building and Planning based on Graph Partition-
ing. IEEE International Conference on Robotics and
Automation, 1.

IJCAI-07
2008

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

