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Abstract

We consider the problem of learning heuristics for
controlling forward state-space beam search in AI
planning domains. We draw on a recent framework
for “structured output classification” (e.g. syntac-
tic parsing) known as learning as search optimiza-
tion (LaSO). The LaSO approach uses discrimi-
native learning to optimize heuristic functions for
search-based computation of structured outputs and
has shown promising results in a number of do-
mains. However, the search problems that arise in
AI planning tend to be qualitatively very different
from those considered in structured classification,
which raises a number of potential difficulties in di-
rectly applying LaSO to planning. In this paper, we
discuss these issues and describe a LaSO-based ap-
proach for discriminative learning of beam-search
heuristics in AI planning domains. We give conver-
gence results for this approach and present experi-
ments in several benchmark domains. The results
show that the discriminatively trained heuristic can
outperform the one used by the planner FF and an-
other recent non-discriminative learning approach.

1 Introduction

A number of state-of-the-art planners are based on the
old idea of forward state-space heuristic search [Bonet and
Geffner, 1999; Hoffmann and Nebel, 2001; Nguyen et al.,
2002]. The success is due to the recent progress in defining
domain-independent heuristic functions that work well across
a range of domains. However, there remain many domains
where these heuristics are deficient, leading to planning fail-
ure. One way to improve the applicability and robustness of
such planning systems is to develop learning mechanisms that
automatically tune the heuristic to a particular domain based
on prior planning experience. In this work, we consider the
applicability of recent developments in machine learning to
this problem. In particular, given a set of solved planning
problems from a target domain, we consider using discrim-
inative learning techniques for acquiring a domain-specific
heuristic for controlling beam search.

Despite the potential benefits of learning to improve for-
ward state-space planning heuristics, there have been few re-

ported successes. While there has been a substantial body
of work on learning heuristics or value functions to control
search, e.g. [Boyan and Moore, 2000; Zhang and Dietterich,
1995; Buro, 1998], virtually all such work has focused on
search optimization problems. These problems involve find-
ing “least cost” configurations of combinatorial objects and
have a much different flavor than the types of domains en-
countered in benchmarks from AI planning. To our knowl-
edge, no such previous system has been demonstrated on
benchmark domains from AI planning.

Recent work [Yoon et al., 2006] has made progress toward
learning heuristics for planning domains. The work focused
on improving the heuristic used by the state-of-the-art planner
FF [Hoffmann and Nebel, 2001]. In particular, the approach
used linear regression to learn an approximation of the differ-
ence between FF’s heuristic and the observed distances-to-
goal of states in the training plans. The primary contribution
of the work was to define a generic knowledge representa-
tion for features and a features-search procedure that allowed
learning of good regression functions across a range of plan-
ning domains. While the approach showed promising results,
the learning mechanism has a number of potential shortcom-
ings. Most importantly, the mechanism does not consider
the actual search performance of the heuristic during learn-
ing. That is, learning is based purely on approximating the
observed distances-to-goal in the training data. Even if the
learned heuristic performs poorly when used for search, the
learner makes no attempt to correct the heuristic in response.

In this paper, we consider a learning approach that tightly
couples learning with the actual search procedure, iteratively
updating the heuristic in response to observed search errors.
This approach is discriminative in the sense that it only at-
tempts to learn a heuristic that discriminates between “good”
and “bad” states well enough to find the goal, rather than at-
tempting to precisely model the distance-to-goal. In many
areas of machine learning, such discriminative methods have
been observed to outperform their non-discriminative coun-
terparts. A main goal of this work is to demonstrate such
benefits in the context of planning.

Our learning approach is based on the recent framework
of learning as search optimization (LaSO) [Daume III and
Marcu, 2005], which was developed to solve “structured out-
put classification” problems. Such problems involve map-
ping structured inputs (e.g. sentences) to structured outputs

IJCAI-07
2041



(e.g. syntactic parses) and classification can be posed as per-
forming a search over candidate outputs guided by a heuris-
tic. LaSO provides an approach for discriminative learning
of such heuristics and has demonstrated good performance
across several structured classification problems. However,
the search problems corresponding to structured classifica-
tion are qualitatively very different from those typical of AI
planning domains. For example, in structured classification
the search problems typically have a single or small number
of solution paths, whereas in AI planning there are often a
very large number of equally good solutions. Given these
differences, the utility of LaSO in our context is not clear.

The main contributions of this paper are to describe a
LaSO-inspired algorithm for learning beam-search heuristics,
to prove the convergence of the algorithm, and to provide an
empirical evaluation in a number of AI planning domains.
Our empirical results show that the approach is able to learn
heuristics that improve beam-search compared to using the
heuristic from the planner FF. In addition, the results show
that discriminative learning appears to have an advantage over
the existing non-discriminative approach.

In what follows, we first give our problem setup for learn-
ing planning heuristics. Next, we give an overview of the
LaSO framework for structured classification, followed by a
description of our LaSO variant and convergence analysis. Fi-
nally, we present experiments and conclude.

2 Learning Planning Heuristics

Planning Domains. A planning domain D defines a set of
possible actions A and a set of states S in terms of a set of
predicate symbols P , action types Y , and constants C. A
state fact is the application of a predicate to the appropriate
number of constants, with a state being a set of state facts.
Each action a ∈ A consists of: 1) an action name, which is
an action type applied to the appropriate number of constants,
2) a set of precondition state facts Pre(a), 3) two sets of state
facts Add(a) and Del(a) representing the add and delete ef-
fects respectively. As usual, an action a is applicable to a state
s iff Pre(a) ⊆ s, and the application of an (applicable) action
a to s results in the new state s′ = (s \ Del(a)) ∪ Add(a).

Given a planning domain, a planning problem is a tuple
(s, A, g), where A ⊆ A is a set of actions, s ∈ S is the ini-
tial state, and g is a set of state facts representing the goal.
A solution plan for a planning problem is a sequence of ac-
tions (a1, . . . , al), where the sequential application of the se-
quence starting in state s leads to a goal state s′ where g ⊆ s′.
In this paper, we will view planning problems as directed
graphs where the vertices represent states and the edges repre-
sent possible state transitions. Planning then reduces to graph
search for a path from the initial state to goal.

Learning to Plan. We focus on learning heuristics in the
simple, but highly successful, framework of forward state-
space search planning. Our goal is to learn heuristics that
can quickly solve problems using breadth-first beam search
with a small beam width. Given a representative training
set of problems from a planning domain, our approach first
solves the problems using potentially expensive search and
then uses the solutions to learn a heuristic that can guide a

small width beam search to the same solutions. The hope is
that the learned heuristic will then quickly solve new prob-
lems that could not be practically solved prior to learning.

Heuristic Representation. We consider learning heuristic
functions that are represented as linear combinations of fea-
tures, i.e. H(n) = Σiwi ·fi(n) where n is a search node, fi is
a feature of search nodes, and wi is the weight of feature fi.
One of the challenges with this approach is defining a generic
feature space from which features are selected and weights
are learned. The space must be rich enough to capture im-
portant properties of a wide range of domains, but also be
amenable to searching for those properties. For this purpose
we will draw on prior work [Yoon et al., 2006] that defined
such a feature space, based on properties of relaxed plans,
and described a search approach for finding useful features.
In this investigation, we will use the features from that work
in addition to using the relaxed-plan length heuristic.

The approach of [Yoon et al., 2006] used a simple weight
learning method, where weights were tuned by linear regres-
sion to predict the distance-to-goal of search nodes in the
training set. While this approach showed promise, it is obliv-
ious to the actual performance of the heuristic when used for
search. In particular, even if the heuristic provides poor guid-
ance for search on the training problems no further learning
will occur. The main objective of this work is to improve per-
formance by investigating a more sophisticated weight learn-
ing mechanism that is tightly integrated with the search pro-
cess, iteratively adapting the heuristic in response to observed
search errors. Below we first describe prior work from struc-
tured classification upon which our approach is based, and
then describe its adaptation to our setting.

3 Learning Heuristics for Structured

Classification

Structured classification is the problem of learning a map-
ping from structured inputs to structured outputs. An example
problem is part-of-speech tagging where the goal is to learn a
mapping from word sequences (i.e. sentences) to sequences
of part-of-speech tags. Recent progress in structured classi-
fication includes methods based on condition random fields
[Lafferty et al., 2001], Perceptron updates [Collins, 2002],
and margin optimization [Taskar et al., 2003].

A recent alternative approach [Daume III and Marcu,
2005] views structured classification as a search problem and
learns a heuristic for that problem based on training data. In
particular, given a structured input x, the problem of labeling
x by a structured output y is treated as searching through an
exponentially large set of candidate outputs. For example, in
part-of-speech tagging where x is a sequence of words and
y is a sequence of word tags, each node in the search space
is a pair (x, y′) where y′ is a partial labeling of the words in
x. Learning corresponds to inducing a heuristic that quickly
directs search to the search node (x, y) where y is the de-
sired output. This framework, known as learning as search
optimization (LaSO), has demonstrated state-of-the-art per-
formance on a number of structured classification problems
and serves as the basis of our work.

LaSO assumes a feature-vector function F (n) =
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〈f1(n), . . . , fm(n)〉 that maps search nodes to descriptive
features. For example, in part-of-speech tagging, the features
may be indicators that detect when particular words are la-
beled by particular tags, or counts of the number of times an
article-tag was followed by a noun-tag in a partial labeling
y′. The heuristic is a linear combination of these features
H(n) = F (n) · w, where w is a weight vector. LaSO at-
tempts to select a w that guides search to the target solution
by directly integrating learning into the search process. For
each training example, LaSO conducts a search guided by the
heuristic given by the current weights. Whenever a “search
error” is made, the weights are updated so as to avoid the
same type of error in the future. The process repeats until
convergence or a stopping conditions. Convergence results
have been stated [Daume III and Marcu, 2005] for certain
types of weight updates.

4 Learning Heuristics for Planning

Given the success of LaSO in structured classification, it
is interesting to consider its applications to a wider range
of search problems. Here we focus on search in AI plan-
ning. Recall that our “learning to plan” training set con-
tains planning problems with target solutions. This problem
can be viewed as structured classification with a training set
{(xi, yi)}, where each xi = (s0, g) is a planning problem
and each yi = (s0, s1, ..., sT ) is a sequence of states along
a solution plan for xi. We can now consider applying LaSO
to learn a heuristic that guides a forward state-space search to
find the solution yi for each xi.

While in concept it is straightforward to map planning to
the LaSO framework, it is not so obvious that the approach
will work well. This is because the search problems arising
in AI planning have very different characteristics compared
to those tackled by LaSO so far. Most notably, there are typi-
cally a large number of good (even optimal) solutions to any
given planning problem. These solutions may take very dif-
ferent paths to the goal or may result by simply reordering the
steps of a particular plan. For example, in the Blocks world,
in any particular state, there are generally many possible good
next actions as it does not matter which order the various goal
towers are constructed. Despite the possibility of many good
solutions, LaSO will attempt to learn a heuristic that strictly
prefers the training-set solutions over other equally good so-
lutions that are not in the training set. This raises the potential
for the learning problem to be impossible to solve or very dif-
ficult since many of the other good solutions to xi may be
inherently identical to yi. In such cases, it is simply not clear
whether the weights will converge to a good solution or not.

One approach to overcoming this difficulty might be to in-
clude many or all possible solutions in the training set. In
general, this is not practical due to the enormous number of
possible good plans, though studying methods for computing
compact representations of such plan sets and using them in
LaSO is of interest. Rather, in this work we continue to use
a single target solutions and evaluate an algorithm very much
like the original LaSO, noting the potential practical prob-
lems that might arise due to multiple solutions. Interestingly,
below we are able to derive a convergence result for this al-

gorithm under certain assumptions about the structure of the
multiple good solutions relative to the target solution.

Below we describe a variant of LaSO used in our planning
experiments. Our variant is based on the use of breadth-first
beam search, which is not captured by the original LaSO and
that we found to be more useful in the context of planning.
We will refer to the modified procedure as LaSO∗.

Beam search. In breadth-first beam search, a beam B of
beam width b is generated at each search step resulting in a
beam of b nodes. At each step, all of the nodes on the cur-
rent beam are expanded and the top b children, as scored by
the heuristic, are taken to be the next beam. This process
continues until a goal node appears on the beam, at which
point a solution plan has been found. When the beam width
is small, many nodes in the search space are pruned away, of-
ten resulting in the inability to find a solution or finding very
sub-optimal solutions. When the beam width increases, the
quality of the solutions tend to improve, however, both the
time and space complexity increases linearly with the beam
width, leading to practical limitations. The goal of our work
is to learn a domain-specific heuristic that allows for beam
search with small b to replicate the result of using a large b.
This can be viewed as a form of speedup learning.

Discriminative Learning. The input to our learner is a set
{(xi, yi)} of pairs, where xi = (s0, g) is a training problem
from the target planning domain and yi = (s0, s1, . . . , sT )
is a state sequence corresponding to a solution plan for xi.
Our training procedure will attempt to find weights such that
for each problem the j’th state in the solution is contained in
the j’th beam of the search. A search error is said to occur
whenever this is not the case. Figure 1 gives pseudo-code
for the overall learning approach. The top-level procedure
repeatedly cycles through the training set passing each exam-
ple to LaSO∗ to arrive at updated weights. The procedure
terminates when the weights remain unchanged after cycling
through all examples or a user defined stopping condition.

Given a training example (xi, yi), LaSO∗ conducts a beam
search starting with the initial beam {(xi, (s0))}, i.e. a sin-
gle search node with an empty plan. After generating beam
j of the search, if n∗ = (xi, (s0, s1, . . . , sj)) is not on the
beam then we have a search error. In this case, we update the
weights in a way that makes n∗ more preferred by the heuris-
tic, ideally enough to remain on the beam next time through
the search. We use a weight updating rule, similar to the Per-
ceptron update proposed in [Daume III and Marcu, 2005]

w = w + α ·

„ P
n∈B

F (n)

|B|
− F (n∗)

«

where 0 < α ≤ 1 is a learning rate parameter, F (n) is the
feature vector of search node n and B is the current beam. In-
tuitively this update rule moves the weights in a direction that
decreases the heuristic value (increase the preference) of the
desired search node n∗ and increases the heuristic value for
the nodes in the beam. After the weight update, the beam is
replaced by the single search node n∗ and the search contin-
ues. Note that each call to LaSO∗ is guaranteed to terminate
in T search steps, generating training examples as necessary.
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HeuristicLearn ({(xi, yi)}, b)
w ← 0
repeat until w is unchanged or a large number of iterations

for every (xi, yi)
LaSO∗((xi, yi), w, b)

return w

LaSO∗ ((x, y), w, b)

// x is a planning problem (s0, g)
// y is a solution trajectory (s0, s1, . . . , sT )
// w is the weight vector

B ← {(x, (s0))} // initial beam

for j = 0, . . . , T − 1
B ← BeamExpand(B, w, b)

n∗ ← (x, (s1, . . . , sj+1)) // desired node

if n∗ /∈ B then

w ← Update(w, B, n∗)

B ← {n∗}

BeamExpand (B, w, b)

candidates ← {}
for every n ∈ B

candidates ← candidates∪ Successors(n)

for every n ∈ candidates

H(n) ← w · F (n) // compute heuristic score of n

return b nodes in candidates with lowest heuristic value

Figure 1: The discriminative learning algorithm.

5 Convergence of LaSO∗

We now prove that under certain assumptions LaSO∗ is guar-
anteed to converge in a finite number of iterations to a set of
weights that solves all of the training examples. In particu-
lar, we extend the convergence results of the original LaSO to
the case of “multiple good solutions”. The proof is a simple
generalization of the one used to prove convergence of Per-
ceptron updates for structured classification [Collins, 2002].

Consider a set of training problems (xi, yi), where xi =
(s0, g) and yi = (s0, s1, . . . , sT ). For each (xi, yi) we denote
by n∗

ij = (xi, (s0, . . . , sj)) the node on the desired search
path at depth j for example i. Also let Dij be the set of all
nodes that can be reached in j search steps from n∗

i0. That is,
Dij is the set of all possible nodes that could be in the beam
after j beam updates. In our result, we will let R be a constant
such that ∀i, j,∀n ∈ Dij , ‖F (n)−F (n∗

ij)‖ ≤ R where F (n)
is the feature vector of node n and ‖ · ‖ denotes 2-norm.

Our results will be stated in terms of the existence of a
weight vector that achieves a certain margin on the training
set. Here we use a notion of margin that is suited to our beam
search framework and that is meaningful when there is no
weight vector that ranks the target solutions as strictly best,
i.e. there can be other solutions that look just as good or bet-
ter. As defined below a beam margin is a triple (b′, δ1, δ2)
where b′ is a non-negative integer, and δ1, δ2 ≥ 0.

Definition 1 (Beam Margin). A weight vector w has beam
margin (b′, δ1, δ2) on a training set {(xi, yi)} if for each i, j
there is a set D′

ij ⊆ Dij of size at most b′ such that

∀n ∈ Dij − D
′

ij , w · F (n) − w · F (n∗

ij) ≥ δ1 and,

∀n ∈ D
′

ij , δ1 > w · F (n) − w · F (n∗

ij) ≥ −δ2

Weight vector w has beam margin (b′, δ1, δ2) if at each search
depth it ranks the target node n∗

ij better than most other nodes

by a margin of at least δ1, and ranks at most b′ nodes bet-
ter than n∗

ij by a margin no greater than δ2. Whenever this
condition is satisfied we are guaranteed that a beam search

with width b > b′ using weights w will solve all of the train-
ing problems. The case where b′ = 0 corresponds to the
more typical definition of margin (also used by the original
LaSO), where the target is required to be ranked higher than
all other nodes. By considering the case where b′ > 0 we
can show convergence in cases where no such “dominating”
weight vector exists, yet there are weight vectors that allow
search to correctly solve the training problems. The following
theorem shows that if LaSO∗ uses a large enough beam width
relative to the beam margin, then it is guaranteed to converge
after a finite number of mistakes.

Theorem 1. If there exists a weight vector w, such that
‖w‖ = 1 and w has beam margin (b′, δ1, δ2) on the training

set, then for any beam width b >
(
1 + δ2

δ1

)
b′, the number of

mistakes made by LaSO∗ is bounded by

(
bR

δ1(b−b′)−δ2b′

)2

.

Proof. (Sketch) Let wk be the weights before the k′th mis-
take is made. Then w1 = 0. Suppose the k′th mis-
take is made when the beam B at depth j does not con-
tain the target node n∗ = n∗

ij . Using the fact that for

n ∈ B, wk · F (n∗) > wk · F (n), one can derive that
‖wk+1‖2 ≤ ‖wk‖2 + R2, which by induction implies that
‖wk+1‖2 ≤ kR2. Next, using the definition of beam margin

one can derive that w · wk+1 ≥ w · wk + (b−b′)δ1

b − b′δ2

b ,

which implies that w · wk+1 ≥ k
(b−b′)δ1−b′δ2

b . Combin-
ing these inequalities and noting that ‖w‖ = 1 we get that

1 ≥ w·wk+1

‖w‖‖wk+1‖ ≥ k
(b−b′)δ1−b′δ2

b
√

kR
, implying the theorem.

Notice that when b′ = 0, i.e. there is a dominating weight

vector, the mistake bound reduces to
(

R
δ1

)2

, which does not

depend on the beam width and matches the result stated in
[Daume III and Marcu, 2005]. This is also the behavior when
b >> b′. In the case when δ1 = δ2 and we use the minimum
beam width allowed by the theorem b = 2b′ + 1, the bound

is
(

(2b′+1)R
δ1

)2

, which is a factor of (2b′ + 1)2 larger than

when b >> b′. Thus, this result points to a trade-off between
the mistake bound and computational complexity of LaSO∗.
That is, the computational complexity of each iteration in-
creases linearly with the beam width, but the mistake bound
decreases as the beam width becomes large. This agrees with
the intuition that the more computation time we are willing to
put into search at planning time, the less we need to learn.

6 Experimental Results

We present experiments in five STRIPS domains: Blocks
world, Pipesworld, Pipesworld-with-tankage, PSR and
Philosopher. We set a time cut-off of 30 CPU minutes and
considered a problem to be unsolved if a solution is not found
within the cut-off. Given a set of training problems we gener-
ated solution trajectories by running both FF and beam search
with different beam widths and then taking the best solution
found as the training trajectory. For Blocks world, we used
a set of features learned in previous work [Yoon et al., 2005;
Fern et al., 2003; Yoon, 2006] and for the other domains we
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used the those learned in [Yoon et al., 2006; Yoon, 2006]. In
all cases, we include FF’s heuristic as a feature.

We used LaSO∗ to learn weights with a learning rate of
0.01. For Philosopher, LaSO∗ was run for 10000 iterations
with a learning beam width of 1. For the other domains,
LaSO∗ was run for 1000 or 5000 iterations with a learn-
ing beam width of 10 (this beam width did not work well
for Philosopher). The learning times varied across domains,
depending on the number of predicates and actions, and the
length of solution trajectories. The average time for process-
ing a single problem in a single iteration was about 10 sec-
onds for PSR, 2 seconds for Pipesworld-with-tankage, and
less than 1 seconds for the other domains.

Domain Details. Blocks world problems were generated
by the BWSTATES generator [Slaney and Thiébaux, 2001].
Thirty problems with 10 or 20 blocks were used as training
data, and 30 problems with 20, 30, or 40 blocks were used for
testing. There are 15 features in this domain including FF’s
relax-plan-length heuristic. The other four domains are taken
from the fourth international planning computation (IPC4).
Each domain included 50 or 48 problems, roughly ordered
by difficulty. We used the first 15 problems for training and
the remaining problems for testing. Including FF’s relaxed-
plan-length heuristic, there were 35 features in Pipesworld,
11 features in Pipesworld-with-tankage, 54 features in PSR
and 19 features in Philosopher.

Performance Across Beam Sizes. Figure 2 gives the per-
formance of beam search in each domain for various beam
widths. The columns correspond to four algorithms: LEN
- beam search using FF’s relaxed-plan-length heuristic, U -
beam search using a heuristic with uniform weights for all
features, LaSO∗ - beam search using the heuristic learned us-
ing LaSO∗ (with learning beam width specified above), and
LR - beam search using the heuristic learned from linear re-
gression as was done in [Yoon et al., 2006]. Each row corre-
sponds to a beam width and shows the number of solved test
problems and the average plan length of the solved problems.

In general, for all algorithms we see that as the beam width
increases the number of solved problems increases and solu-
tion lengths improve. However, after some point the number
of solved problems typically decreases. This behavior is typ-
ical for beam search, since as the beam width increases there
is a greater chance of not pruning a solution trajectory, but the
computational time and memory demands increase. Thus, for
a fixed time cut-off we expect a decrease in performance.

LaSO∗ Versus No Learning. Compared to LEN, LaSO∗
tended to significantly improve the performance of beam
search, especially for small beam widths—e.g. in Blocks
world with beam width 1 LaSO∗ solves twice as many prob-
lems as LEN. The average plan length has also been reduced
significantly for small beam widths. As the beam width
increases the gap between LaSO∗ and LEN decreases but
LaSO∗ still solves more problems with comparable solution
quality. In Pipesworld, LaSO∗ has the best performance with
beam width 5, solving 12 more problems than LEN. As the
beam width increases, again the performance gap decreases,
but LaSO∗ consistently solves more problems than LEN. The
trends are similar for the other domains, except that in PSR,
LEN solves slightly more than LaSO∗ for large beam widths.

Blocks World

Problems solved Average plan length

b LEN U LaSO∗ LR LEN U LaSO∗ LR

1 13 0 25 11 6022 - 2444 4254

5 21 0 26 19 3094 - 939 1767

10 22 0 25 19 2589 - 1035 368

20 23 0 27 22 921 - 671 227

50 20 0 27 19 522 - 488 102

100 19 0 24 20 290 - 218 157

500 17 0 17 23 101 - 122 84

1000 16 0 19 20 100 - 103 68

Pipesworld

Problems solved Average plan length

b LEN U LaSO∗ LR LEN U LaSO∗ LR

1 11 13 13 8 375 4323 1739 3888

5 16 17 28 19 1467 3176 1409 1300

10 17 17 26 21 2192 2252 740 800

20 17 17 27 22 161 1287 173 885

50 18 19 27 21 264 643 84 4111

100 18 16 27 21 83 233 72 165

500 21 18 25 21 39 73 67 74

1000 20 18 22 20 31 47 52 38

Pipesworld-with-tankage

Problems solved Average plan length

b LEN U LaSO∗ LR LEN U LaSO∗ LR

1 6 4 7 2 139 2990 1491 1678

5 6 8 8 6 466 914 427 1556

10 6 8 8 9 142 2357 390 739

20 9 8 11 9 530 503 273 880

50 6 5 10 6 81 289 417 548

100 5 4 9 5 73 138 135 58

500 5 6 9 4 301 142 159 45

1000 5 6 8 7 69 61 79 100

PSR

Problems solved Average plan length

b LEN U LaSO∗ LR LEN U LaSO∗ LR

1 0 0 0 0 - - - -

5 0 4 14 9 - 231 275 228

10 1 20 12 13 516 178 194 160

20 7 18 12 17 374 151 183 146

50 13 17 16 16 154 106 105 109

100 13 15 9 13 114 91 86 86

500 4 4 2 2 55 61 53 48

1000 1 2 1 1 39 50 39 43

Philosopher

Problems solved Average plan length

b LEN U LaSO∗ LR LEN U LaSO∗ LR

1 0 33 0 33 - 363 - 363

5 0 33 24 33 - 363 5469 363

10 0 33 21 33 - 363 3999 363

20 0 32 18 32 - 368 2612 358

50 0 6 10 23 - 255 966 308

100 0 16 9 18 - 287 1348 281

500 0 7 2 7 - 225 254 220

1000 0 1 1 4 - 198 214 204

Figure 2: Experimental results for five planning domains.

LaSO∗ significantly improves over U in Blocks world,
Pipesworld and Pipesworld-with-tankage. Especially in
Blocks world, where U does not solve any problem. For PSR,
LaSO∗ only improves over U at beam width 5 and is always
worse in Philosopher (see discussion below).

The results show that LaSO∗ is able to improve on the
state-of-the-art heuristic LEN and that in the majority of our
domains learning is beneficial compared to uniform weights.
In general, the best performance for LaSO∗ was achieved for
small beam widths close to those used for training.

Comparing LaSO∗ with Linear Regression. To com-
pare with prior non-discriminative heuristic learning work we
learned weights using linear regression as done in [Yoon et
al., 2006] utilizing the Weka linear regression tool. The re-
sults for the resulting learned linear-regression heuristics are
shown in the columns labeled LR.

For Blocks world, LR solves fewer problems than LaSO∗
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with beam widths smaller than 100 but solves more prob-
lems than LaSO∗ with beam widths larger than 100. For
Pipesworld and Pipesworld-with-tankage, LaSO∗ always
solves more problems than LR. In PSR, LaSO∗ is better
than LR with beam width 5, but becomes slightly worse as
the beam width increases. In Philosopher, LR outperforms
LaSO∗, solving all problems with small beam widths.

The results indicate that LaSO∗ can significantly improve
over non-discriminative learning (here regression) and that
there appears to be utility in integrating learning directly in
to search. The results also indicate that LaSO∗ can fail to
converge to a good solution in some domains where regres-
sion happens to work well, particularly in Philosopher. In this
domain, since action sequences can be almost arbitrarily per-
muted, there is a huge set of inherently identical optimal/good
solutions. LaSO∗ tries to make the single training solution
look better than all others, which appears problematic here.
More technically, the large set of inherently identical solu-
tions means that the beam-width threshold required by The-

orem 1, i.e. (1 + δ2

δ1
)b′, is extremely large, suggesting poor

convergence properties for reasonably beam widths.

Plan Length. LaSO∗ can significantly improve success
rate at small beam widths, which is one of our main goals.
However, the plan lengths at small widths are quite subop-
timal, which is typical behavior of beam search. Ideally we
would like to obtain these success rates without paying a price
in plan length. We are currently investigating ways to im-
prove LaSO∗ in this direction. Also we note that typically one
of the primary difficulties of AI planning is to simply find a
path to the goal. After finding such a path, if it is significantly
sub-optimal, incomplete plan analysis or plan rewriting rules
can be used to significantly prune the plan, e.g. see [Ambite
et al., 2000]. Thus, we can use the current LaSO∗ to quickly
find goals followed by fast plan length optimization.

7 Summary and Future Work

We discussed the potential difficulties of applying LaSO to
AI planning given the qualitative differences between search
problems in AI planning and those in structured classifica-
tion. Nevertheless, our preliminary investigation shows that
in several planning domains our LaSO variant is able to sig-
nificantly improve over the heuristic of FF plan and over
regression-based learning [Yoon et al., 2006]. We conclude
that the approach has good promise as a way of learning
heuristics to control forward state-space search planners. Our
results also demonstrated failures of the discriminative ap-
proach, where it performed significantly worse than linear re-
gression, which suggest future directions for improvement.

In future work we plan to extend our approach to automat-
ically induce new features. Another important direction is to
investigate the sensitivity of the LaSO approach to the par-
ticular solutions provided in the training data. In addition,
understanding more general conditions under which the ap-
proach is guaranteed to converge is of interest. Currently,
we have shown a sufficient condition for convergence but not
necessary. We are also interested in determining the computa-
tional complexity of learning linear heuristics for controlling
beam search. Also of interest is to investigate the use of plan

analysis in LaSO to convert the totally ordered training plans
to partially-order plans, which would help deal with the prob-
lem of “many inherently identical solutions” experienced in
domains such as Philosopher. Finally, we plan to consider
other search spaces and settings such as partial-order plan-
ning, temporal-metric planning, and probabilistic planning.
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