
Using Learned Policies in Heuristic-Search Planning

SungWook Yoon
Computer Science & Engineering

Arizona State University
Tempe, AZ 85281

Sungwook.Yoon@asu.edu

Alan Fern
Computer Science Department

Oregon State University
Corvallis, OR 97331

afern@cs.orst.edu

Robert Givan
Electrical & Computer Engineering

Purdue University
West Lafayette, IN 47907

givan@purdue.edu

Abstract

Many current state-of-the-art planners rely on forward heuris-
tic search. The success of such search typically depends
on heuristic distance-to-the-goal estimates derived from the
plangraph. Such estimates are effective in guiding search for
many domains, but there remain many other domains where
current heuristics are inadequate to guide forward search ef-
fectively. In some of these domains, it is possible to learn
reactive policies from example plans that solve many prob-
lems. However, due to the inductive nature of these learning
techniques, the policies are often faulty, and fail to achieve
high success rates. In this work, we consider how to ef-
fectively integrate imperfect learned policies with imperfect
heuristics in order to improve over each alone. We propose
a simple approach that uses the policy to augment the states
expanded during each search step. In particular, during each
search node expansion, we add not only its neighbors, but all
the nodes along the trajectory followed by the policy from
the node until some horizon. Empirical results show that our
proposed approach benefits both of the leveraged automated
techniques, learning and heuristic search, outperforming the
state-of-the-art in most benchmark planning domains.

Introduction

Heuristic search has been the most successful and dominant
approach for suboptimal AI Planning (Hoffmann & Nebel
2001; Alfonso Gerevini & Serina 2003; Vidal 2004). The
success of this approach is largely due to the development of
intelligent automated heuristic calculation techniques based
on relaxed plans (RPs), plans that ignore the action effect
delete lists. RP-based heuristics provide an effective gra-
dient for search in many AI planning domains. However,
there are some domains where this gradient provides inade-
quate guidance, and heuristic search planners fail to scale up
in such domains.

For some of those domains, e.g. Blocksworld, there are
automated techniques (Martin & Geffner 2000; Fern, Yoon,
& Givan 2004) that can find good policies through machine
learning, enabling planners to scale up well. However, in-
duced policies lack deductive guarantees and are in practice
prone to be faulty—even more so when resource constraints

Copyright c© 2006
All rights reserved.

limit the size of the training data, as occurs in planning
competitions. Nevertheless such policies still capture use-
ful, though imperfect, constraints on good courses of action.
The main goal of this paper is to develop and evaluate an ap-
proach for combining such imperfect policies and heuristics
in order to improve over the performance of either alone.

There are techniques that can improve on imperfect poli-
cies. Policy rollout (Bertsekas & Tsitsiklis 1996) and lim-
ited discrepancy search (LDS) (Harvey & Ginsberg 1995)
are representative of such techniques. Policy rollout uses
online simulation to determine for each encountered state,
as it is encountered, which action performs best if we take
it and then follow the learned base policy to some horizon.
Policy rollout performs very poorly if the base policy is too
flawed to find any reward, as all actions look equally attrac-
tive. This occurs frequently in goal-based domains, where
policy rollout cannot improve on a zero-success-ratio policy
at all.

Discrepancy search determines a variable search horizon
by counting the number of discrepancies from the base pol-
icy along the searched path, so that paths that agree with the
policy are searched more deeply. The search cost is expo-
nential in the number of discrepancies tolerated, and as a
result the search is prohibitively expensive unless the base
policy makes mostly acceptable/effective choices.

Due to limitations on the quantity of training data and the
lack of any guarantee of an appropriate hypothesis space,
machine learning might produce very low quality policies.
Such policies are often impossible to improve effectively
with either policy rollout or LDS. Here, we suggest using
such learned policies during node expansions in heuristic
search. Specifically, we propose adding not only the neigh-
bors of the node being expanded, but also all nodes that oc-
cur along the trajectory given by the learned policy from the
current node. Until the policy makes a bad decision, the
nodes added to the search are useful nodes.

In contrast to discrepancy search, this approach leverages
the heuristic function heavily. But in contrast to ordinary
heuristic search, this approach can ignore the heuristic for
long trajectories suggested by the learned policy. This can
help the planner critically in escaping severe local minima
and large plateaus in the heuristic function. Policy evalua-
tion is typically cheaper than heuristic function calculation
and node expansion, so even where the heuristic is working

IJCAI-07
2047

well, this approach can be faster.

We tested our proposed technique over all of the
STRIPS/ADL domains of International Planning Competi-
tions (IPC) 3 and 4, except for those domains where the
automated heuristic calculation is so effective as to pro-
duce essentially the real distance. We used some compe-
tition problems for learning policies and then used the rest
of the problems for testing our approach. Note that this ap-
proach is domain-independent. Empirical results show that
our approach performed better than using policies alone and
in most domains performed better than state-of-the-art plan-
ners.

Planning

A deterministic planning domain D defines a set of possible
actions A and a set of states S in terms of a set of predicate
symbols P , action types Y , and objects C. Each symbol
σ in P or Y has a defined number of arguments it expects,
denoted by arity(σ). A state s is a set of state facts, where a
state fact is an application of a predicate symbol p to arity(p)
objects from C. An action a is an application of an action
type y to arity(y) objects from C.

Each action a ∈ A is associated with three sets of state
facts, Pre(a), Add(a), and Del(a) representing the precondi-
tion, add, and delete effects respectively. As usual, an action
a is applicable to a state s iff Pre(a) ⊆ s, and the applica-
tion of an (applicable) action a to s, results in the new state
a(s) = (s \ Del(a)) ∪ Add(a).

Given a planning domain, a planning problem is a tuple
(s, A, g), where A ⊆ A is a set of actions, s ∈ S is the initial
state, and g is a set of state facts representing the goal. A
solution plan for a planning problem is a sequence of actions
(a1, . . . , al) from A, where the sequential application of the
sequence starting in state s leads to a goal state s′ where
g ⊆ s′.

Learning Policies

A reactive policy π for a planning domain D is a function
that maps each state s to an action a that is applicable to the
state s. We desire a policy π for which iterative application
of π to the initial state s of a problem p in D will find a
goal, so that g ⊆ τπ(τπ(. . . τπ(s))), writing τπ(s) for the
next state under π, i.e., (π(s)) (s). Good reactive decision-
list policies have been represented and learned for many AI
planning domains (Khardon 1999; Martin & Geffner 2000;
Yoon, Fern, & Givan 2002; 2005).

Taxonomic Decision List Policies

We represent a reactive policy as an ordered list of rules
(Rivest 1987), each of which specifies constraints on the ar-
guments of an action:

DL = {rule1, . . . , rulen}
rulei = 〈y : x1 ∈ Ci1, . . . , xm ∈ Cim〉

Here, m is arity(y) for action type y and each Cij is a con-
cept expression specifying a set of objects, as described be-
low. A rule can fire on any tuple of objects o1, . . . , om such

that each oi is in set specified by the corresponding Cij—
upon firing the rule suggests action y(o1, . . . , om). The ear-
liest rule in the list that can be fired in the current state will
be fired. If more than one action is suggested by that rule,
the tie is broken lexicographically based on an arbitrary un-
changing ordering of the domain objects.

The syntax for the concepts is the following.

C = any-object | C ∩ C | ¬C |

(p C1 . . . Ci−1 ∗ Ci+1 . . . Carity(p))

Here, p is a predicate symbol, from P or as specified below.
The predicate symbol p is applied to smaller class expres-
sions, but with one argument omitted, indicated by a “*”.
Such applications denote the class of objects that make the
predicate true when filled in for “*”, given that the other ar-
guments of p (if any) are provided to match the class expres-
sions given. The semantics of the other constructs as classes
of objects is as expected—please refer to (Yoon, Fern, &
Givan 2002; 2006; McAllester & Givan 1993) for the de-
tailed specification of the syntax and semantics. Note that
this syntax automatically derives from predicate symbols of
the target planning domain.

The evaluation of the semantics of each class C is rela-
tive to the relational database D constructed from the cur-
rent state, the goal information and other information that is
deduced from the current state and goal information. In our
case this includes the relaxed plan from the current state to a
goal state, a form of reasoning to construct features (Geffner
2004) and the reflexive transitive closure p∗ for each binary
predicate p. Predicate symbols other than those in P are al-
lowed in order to represent goal information and features of
the relaxed plan, as described in detail in (Yoon, Fern, &
Givan 2002; 2006).

As an example decision list policy, consider a simple
Blocksworld problem where the goal is clearing off a block
A. The following decision-list policy is an optimal policy.
{〈putdown(x1) : x1 ∈ holding(∗)〉, 〈unstack(x1) : x1 ∈
clear(∗) ∩ (on∗ ∗ A)〉}. The first rule says “putdown any
block that is being held” and the second rule says “unstack
any block that is above the block A and clear”.

Learning Reactive Policies

For our evaluation, we learn reactive policies from solved
small problems. For this purpose we deploy a learner similar
to that presented in (Yoon, Fern, & Givan 2002). Given a set
of training problems along with solutions we create a train-
ing set to learn a classifier that will be taken to be the learned
policy. The classifier training set contains states labeled by
positive and negative actions. The positive actions are those
that are contained in the solution plan for each state, and all
other actions in a state are taken to be negative. The learn-
ing algorithm conducts a beam search through the candidate
class expressions, greedily seeking constraints on each ar-
gument of each action type to match the positive actions and
not match the negative actions. Note that the training set
is noisy in the sense that not all actions labeled as negative
are actually bad. That is, there can be many optimal/good
actions from a single state, though only one is included in

IJCAI-07
2048

the training solutions. This noise is one reason that learned
policies can be imperfect.

Using Non-Optimal Policies

Typically learned policies will not be perfect due to the bias
of the policy language and variance of the learning proce-
dure. In some domains, the imperfections are not catas-
trophic and the policies still obtain high success rates. In
other domains, the flaws lead to extremely poor success
rates. Nevertheless, in many states, even learned policies
with poor success rates suggest good actions and we would
like methods that can exploit this information effectively.
First, we describe two existing techniques, rollout and dis-
crepancy search that utilize search to improve upon an im-
perfect policy. Our experiments will show that these tech-
niques do not work well in many planning domains, typi-
cally where the quality of the learned policy is low. These
failures led us to propose a new approach to improving poli-
cies with search, which is discussed at the end of this section.

Policy Rollout

Select MIN

a1
ai an

S

F
o

ll
o

w
P

o
li
c
y

�

Q
�

a1
= Length1 Q

�

ai
= Lengthi Q

�

an
= Lengthn

S1

+ Heuristic(S)1

Si Sn

+ Heuristic(S)i + Heuristic(S)n

Figure 1: Policy Rollout. At a state s, for each action a, roll-
out the input policy π from state a(s) until some horizon.
For deterministic domains, the length of the rollout trajec-
tory plus the heuristic at the end can be used as the Q-value
for that action. Select the best action.

Policy rollout (Bertsekas & Tsitsiklis 1996) is a technique
for improving the performance of a non-optimal “base” pol-
icy using simulation. Policy rollout sequentially selects the
action that is the best according to the one-step lookahead
policy evaluations of the base policy. Figure 1 shows the
one-step lookahead action selection. For each action, this
procedure simulates the action from the current state and
then simulates the execution of the base policy from the re-
sulting state for some horizon or until the goal is found. Each
action is assigned a cost equal to the length of the trajectory
following it plus the value of a heuristic applied at the final
state (which is zero for goal states). For stochastic domains
the rollout should be tried several times and the average of
the rollout trials is used as a Q-value estimate. Policy roll-
out then executes the action that achieved the smallest cost
from the current state and repeats the entire process from

the resulting state. While policy rollout can improve a pol-
icy that is mostly optimal, it can perform poorly when the
policy commits many errors, leading to inaccurate action
costs. Multi-level policy rollout, e.g. as used in (Xiang Yan
& Van Roy 2004), is one way to improve over the above
procedure by recursively applying rollout, which takes time
exponential in the number of recursive applications. This
approach can work well when the policy errors are typically
restricted to the initial steps of trajectories. However, for
policies learned in planning domains the distribution of er-
rors does not typically have this form; thus, even multi-step
rollout is often ineffective at improving weak policies.

Discrepancy Search

A discrepancy in a search is a search step that is not selected
by the input policy or heuristic function. Limited discrep-
ancy search (LDS) (Harvey & Ginsberg 1995) bounds the
search depth to some given number of discrepancies. Dis-
crepancy search limited to n disrepancies will consider ev-
ery search path that deviates from the policy at most n times.

G

0

0

0

0

1

1

1

11

2

2 2 2

1

3

Figure 2: An Example of Discrepancy Search. Thin edges
in the figure represent discrepancies. Nodes are labeled with
their discrepancy depth.

Figure 2 shows an example of discrepancy search. The
thick lines are choices favored by the heuristic function and
the thin lines are discrepancies. Each node is shown as a
rectangle labeled by the number of discrepancies needed to
reach that node. Consider the depth of the goal in the search
tree and the number of discrepancies needed to reach the
goal node from the root node. In figure 2, the goal node is at
depth three and discrepancy depth one from the root node.
Plain DFS or BFS search will search more nodes than limit
one disrepancy search. DFS and BFS need to visit 14 nodes
before reaching the goal, while discrepancy search with limit
one will find the goal after a 9-node search. Greedy heuristic
search on this tree needs to backtrack many times before it
reaches the goal node. The search space of LDS has size
exponential in the discrepancy bound, and so, like policy
rollout, LDS also is only effective with policies or heuristic
functions with high quality. Heuristics can be incorporated
by applying the heuristic at the leaves of the discrepancy
search tree and then selecting the action that lead to the best
heuristic value.

IJCAI-07
2049

Incorporating Policies into Heuristic Search

In this work, we consider an alternative approach for in-
corporating imperfect policies into search. We attempt to
take advantage of both approaches, automated heuristic cal-
culation and automated policy learning. The main idea is
to use policies during node expansions in best-first heuristic
search, as described by the node expansion function shown
in Figure 3. At each node expansion of the best-first search,
we add to the search queue the successors of the current best
node as usual, but also add the states encountered by follow-
ing the policy from the current best node for some horizon.
Our approach is similar to Marvin (Coles & Smith 2004),
MacroFF (Botea et al. 2004), and YAHSP (Vidal 2004).
However, unlike these approaches, we do not just add the fi-
nal state encountered by the policy or macro, but rather add
all states along the trajectory.

Embedding the policy into node expansion during heuris-
tic search yields two primary advantages over pure heuris-
tic search. First, when the input policy correlates well
with the heuristic values, the embedding can reduce the
search time. Typically, the direct policy calculation is much
faster than greedy heuristic search because greedy heuristic
search needs to compute the heuristic value of every neigh-
bor, while direct policy execution considers only the current
state in selecting actions. Second, like Blocksworld, where
heuristic calculation frequently underestimates the true dis-
tance, our node expansion can lead the heuristic search out
of local minima.

Node-Expansion-with-Policy (s, π, H)
// problem s, a policy π, a horizon H

N ← Neighbors(s)
s′ ← s
for i = 0 until i == H

s′ ← π(s′)
N ← N ∪ {s′}

Return N

Figure 3: Node expansion for a heuristic search with a pol-
icy. Add nodes that occur along the trajectory of the input
policy as well as the neighbors

Experiments

We evaluated the above approaches on the STRIPS domains
from the recent international planning competitions IPC3
and IPC4, and on Blocksworld. We show the performance
of each planning system in each row of the following fig-
ures. To test the effectiveness of our approach, we tested
our base system, LEN, as well as our proposed technique,
PH. The LEN system uses best-first search with the relaxed-
plan–length (RPL) heuristic. We also compare against the
planner FF, and, for each IPC4 domain, against the best
planner in the competition on the particular domain. Finally,
we compare against policy rollout (PR) and limited discrep-
ancy search (D) techniques. For each system and domain,

we report the number of solved problems, the average solu-
tion time for solved problems and the average length of the
solved problems in separate columns of the results.

We used the first 15 problems as training data in each do-
main and the remaining problems for testing. We considered
a problem to be unsolved if it was not solved within 30 min-
utes. For PR, D and PH systems, we used a horizon of 1000.
All the experiments were run on Linux machines with a 2.8
Xeon Processor and 2GB of RAM.

Blocksworld

Figure 4 shows the results on Blocksworld from Track 1 of
IPC 2. In this domain, LEN, PH, D solved all the prob-
lems but FF and PR failed to solve some problems. We
used 100 cpu secs in learning the policy. The learned policy,
πBlocksworld solved 13 problems. Thus, all of the policy im-
provement approaches, PR, D, and PH improved the input
policy. The PH system solved all of the problems and im-
proved the solution time over LEN, PR and D, showing the
benefit of our approach for speeding-up planning, though
PH produced slightly longer plans than FF and D.

Blocksworld (IPC2)

Systems Solved (20)↑ Time ↓ Length ↓

FF 16 0.64 38.1

LEN 20 11.74 116.3

PR 19 7.89 37.8

D 20 2.09 38

PH 20 0.06 44

Figure 4: Blocksworld Results

IPC3

Figure 5 summarizes the results on the IPC3 domains. The
domains are significantly more difficult to learn policies for
and we used 8h, 6h and 6h of cpu time for learning the poli-
cies in Depots, Driverlog, and FreeCell respectively. Al-
though the learning times are substantial, this is a one-time
cost: such learned policies can be resused for any problem
instance from the domain involved. In these domains, the
learned policies cannot solve any of the tested problems by
themselves.

We see that all of PR, D and PH are able to improve on
the input policies. PH solved more problems overall than
FF, though FF has a slight advantage in solution length in
the Depots domain. The Freecell domain has deadlock states
and our policy performs poorly, probably by leading too of-
ten to deadlock states. Still the experiments show that our
approach attained better solution times, demonstrating again
that using policies in search can reduce the search time by
quickly finding low-heuristic states.

PH outperforms LEN decisively in Depots and Driver-
log, showing a clear benefit from using imperfect policies
in heuristic search for these domains.

IPC4

Figure 6 shows the results for the IPC4 domains. We used
18, 35, 1, 3 and 4 hours of CPU time for learning poli-

IJCAI-07
2050

IPC3

Domain Systems Solved(5) ↑ Time ↓ Length ↓

FF 5 4.32 54.2

LEN 1 0.28 29.0

Depots PR 2 70.86 32

D 3 34.23 36.5

PH 5 3.73 63.2

FF 1 1105 167.0

LEN 1 1623 167.0

Driverlog PR 0 - -

D 0 - -

PH 4 75.91 177.3

FF 5 574.84 108.4

LEN 5 442.94 109.0

Freecell PR 3 545.11 111.3

D 3 323.23 85.6

PH 4 217.49 108.3

Figure 5: IPC3 results

cies for Pipesworld, Pipesworld-Tankage, PSR, Philosopher
and Optical Telegraph respectively. Here we evaluated one
more system, B, which in each domain denotes the best per-
former from that domain from IPC4. The numbers for B
were downloaded from the IPC web site and cannot be di-
rectly compared to our systems results. Still, the numbers
give some idea of the performance comparison. Note that
the learned policies alone can solve all the problems from
the Philosopher and Optical Telegraph domains.

PH generally outperforms FF in solved problems, render-
ing solution length measures incomparable, except in PSR
where the two approaches essentially tie.

For Pipesworld and Pipesworld-with-Tankage domains,
the best performers of those domains in the competition per-
formed much better than our system PH. However, PH still
performed better than LEN, FF, PR and D, showing the ben-
efits of our approach. Marvin, Macroff and YAHSP partic-
ipated the competition. Each of these macro action based
planners solved 60 or so problems. The best planners for
each domain combined solved 105 problems. PH solved 133
problems, showing a clear advantage for our technique.

Overall, the results show that typically our system is able
to effectively combine the learned imperfect policies with
the relaxed-plan heuristic in order to improve over each
alone. This is a novel result. Neither policy rollout nor dis-
crepancy search are effective in this regard and we are not
aware of any prior work that has successfully integrated im-
perfect policies into heuristic search planners.

Heuristic Value Trace in Search

In order to get a view of how incorporating policies can im-
prove the heuristic search, we plotted a trace of the heuristic
value for each node expansion during the search for problem
20 of Depots. Figure 7 shows a long plateau of heuristic val-
ues by the LEN system, while Figure 8 shows large jumps in
heuristic value for the PH system, using far fewer node ex-
pansions, indicating that the policies are effectively helping
to escape plateaus in the search space.

IPC4

Domain Systems Solved (35) ↑ Time ↓ Length ↓

FF 21 71.20 48.2

LEN 15 71.38 48.2

Pipesworld B 35 4.94 74.6

PR 18 472.79 59.5

D 14 215.51 49.3

PH 29 129.21 76.7

FF 4 532.20 62.0

LEN 4 333.34 62.0

Pipesworld B 28 221.96 165.6

Tankage PR 7 366.11 49.7

D 5 428.71 66.4

PH 21 124.07 86.3

FF 17 638.42 104.2

PSR LEN 22 646.59 107.2

(middle B 18 124.93 106.8

complied) PR 6 691.04 72.0

D 4 225.56 55.5

PH 17 659.37 107.0

FF 0 - -

LEN 0 - -

Philosophers B 14 0.20 258.5

PR 33 3.89 363.0

D 33 2.59 363.0

PH 33 2.59 363.0

FF 0 - -

LEN 0 - -

Optical B 10 721.13 387.0

Telegraph PR 33 23.77 594.0

D 33 19.67 594.0

PH 33 19.67 594.0

Figure 6: IPC4 results

In Figures 10 and 9, we show the heuristic traces for LEN
and PH on a Freecell problem where PH failed. Here PH is
unable to escape from the plateau, making only small jumps
in heuristic value over many node expansions. Interestingly,
the trace of LEN system shows a plateau at a higher heuris-
tic value than that for PH followed by a rapid decrease in
heuristic value upon which the problem is solved. We are
currently investigating the reasons for this behavior. At this
point, we speculate that the learned policy manages to lead
the planner away from a useful exit.

Conclusion

We embedded learned policies in heuristic search by follow-
ing the policy during node expansion to generate a trajectory
of new child nodes. Our empirical study indicates advan-
tages to this technique, which we conjecture to have three
sources. When the policy correlates well with the heuris-
tic function, the embedding can speed up the search. Sec-
ondly, the embedding can help escape local minima during
the search. Finally, the heuristic search can repair faulty ac-
tion choices in the input policy. Our approach is easy to
implement and effective, and to our knowledge represents
the first demonstration of effective incorporation of imper-
fect policies into heuristic search planning.

IJCAI-07
2051

References

Alfonso Gerevini, A. S., and Serina, I. 2003. Planning
through stochastic local search and temporal action graphs
in lpg. Journal of Artificial Intelligence Research 20:239–
290.

Bertsekas, D. P., and Tsitsiklis, J. N. 1996. Neuro-Dynamic
Programming. Athena Scientific.

Botea, A.; Enzenberger, M.; Muller, M.; and Schaeffer, J.
2004. Macro-ff. In 4th International Planning Competi-
tion.

Coles, A. I., and Smith, A. J. 2004. Marvin: Macro-
actions from reduced versions of the instance. IPC4 Book-
let, ICAPS 2004. Extended Abstract.

Fern, A.; Yoon, S.; and Givan, R. 2004. Learning domain-
specific control knowledge from random walks. In ICAPS.

Geffner, H. 2004. Planning graphs and knowledge compi-
lation. In International Conference on Principles of Knowl-
edge Representation and Reasoning.

Harvey, W. D., and Ginsberg, M. L. 1995. Limited dis-
crepancy search. In Mellish, C. S., ed., Proceedings of the
Fourteenth International Joint Conference on Artificial In-
telligence (IJCAI-95); Vol. 1, 607–615. Montréal, Québec,
Canada: Morgan Kaufmann, 1995.

Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. JAIR
14:263–302.

Khardon, R. 1999. Learning action strategies for planning
domains. AIJ 113(1-2):125–148.

Martin, M., and Geffner, H. 2000. Learning generalized
policies in planning domains using concept languages. In
KRR.

McAllester, D., and Givan, R. 1993. Taxonomic syntax for
first-order inference. Journal of the ACM 40:246–283.

Rivest, R. 1987. Learning decision lists. MLJ 2(3):229–
246.

Vidal, V. 2004. A lookahead strategy for heuristic search
planning. In International Conference on Automated Plan-
ning and Scheduling.

Xiang Yan, Persi Diaconis, P. R., and Van Roy, B. 2004.
Solitaire: Man versus machine. In NIPS.

Yoon, S.; Fern, A.; and Givan, R. 2002. Inductive policy
selection for first-order MDPs. In UAI.

Yoon, S.; Fern, A.; and Givan, R. 2005. Learning measures
of progress for planning domains. In AAAI.

Yoon, S.; Fern, A.; and Givan, R. 2006. Learning heuristic
functions from relaxed plans. In ICAPS.

Figure 7: heuristic trace of LEN on Depots problem 20

Figure 8: heuristic trace of PH on Depots problem 20

Figure 9: heuristic trace of LEN on FreeCell problem 18

Figure 10: heuristic trace of PH on FreeCell problem 18

IJCAI-07
2052

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

