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Abstract
In human-robot interaction (HRI) it is essential that
the robot interprets and reacts to a human’s utter-
ances in a manner that reflects their intended mean-
ing. In this paper we present a collection of novel
techniques that allow a robot to interpret and ex-
ecute spoken commands describing manipulation
goals involving qualitative spatial constraints (e.g.
“put the red ball near the blue cube”). The result-
ing implemented system integrates computer vi-
sion, potential field models of spatial relationships,
and action planning to mediate between the contin-
uous real world, and discrete, qualitative represen-
tations used for symbolic reasoning.

1 Introduction
For a robot to be able to display intelligent behaviour when
interacting with humans, it is important that it can reason
qualitatively about the current state of the world and possible
future states. Being an embodied cognitive system, a robot
must also interact with the continuous real world and there-
fore must link its qualitative representations to perceptions
and actions in continuous space. In this paper, we present an
implemented robot system that mediates between continuous
and qualitative representations of its perceptions and actions.

To give an impression of the robot’s capabilities, consider a
hypothetical household service robot which is able to accept
an order to lay the dinner table such as “put the knives to the
right of the plate and the forks to the left of the plate.” The
robot has to interpret this utterance and understand it as a goal
it must achieve. It has to analyse its camera input to find the
objects referred to in the owner’s command and it must also
interpret the spatial expressions in the command in terms of
the camera input. Finally, it must plan appropriate actions
to achieve the goal and execute that plan in the real world.
In this paper, we present a system that is able to accomplish
such tasks. In our domain we use cubes and balls in place of
cutlery as our robot’s manipulative abilities are limited (see
Figure 7). In this domain our system acts on commands such

as, “put the blue cube near the red cube” and “put the red
cubes and the green balls to the right of the blue ball”.

We are particularly interested in the consistent interpre-
tation and use of spatial relations throughout the modalities
available to a robot (e.g. vision, language, planning, manip-
ulation). For their different purposes, these modalities use
vastly different representations, and an integrated system
must be able to maintain consistent mappings between them.
This is a hard problem because it means mediating between
the quantitative information about objects available from
vision (e.g. where they are in the world), the qualitative
information available from language (e.g. descriptions
of objects including spatial prepositions), the qualitative
information that must be generated to reason about actions
(e.g. hypothetical future configurations of objects), and
the quantitative information required by an action system
in order manipulate objects. Additionally, when a robot
interacts with humans, mediation capabilities must extend
across system borders: the robot must be able to interpret
the intended meaning of human input in terms of its own
representational capabilities and react in a way that reflects
the human’s intentions. Our system makes the following
contributions in order to tackle these problems:

i) Planning-operator driven interpretation of commands:
we describe a generic method which uses formal planning
operators to guide the interpretation of commands in natural
language and automatically generates formal planning goals.
Referential expressions in the goal are kept for “lazy” reso-
lution by the planner in the context of a given world state.
This allows replanning to dynamically adapt behaviour with-
out having to re-evaluate commands.

ii) Spatial model application: we use potential field models
of spatial prepositions to generate qualitative representations
of goals that satisfy a human command. This model accords
with the ways that humans talk about spatial relations
[Costello and Kelleher, 2006]. This approach allows us to
generate discrete solutions that fit typical human descriptions
of continuous space.

Although the individual techniques are still somewhat limited
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Figure 1: The system architecture.

in scope, by combining them we provide each component in
the architecture access to more information than it would have
in isolation. Thus, the overall system is able to demonstrate
intelligent behaviour greater than the sum of its parts.

In the following section we describe our robot platform and
the system architecture. We then expand on this in sections
§4 (planning domain), §5 (command interpretation), §6 (po-
tential field models for spatial relations) and §7 (qualitative
spatial information from vision). Finally §8 presents an ex-
ample of the functionality of the complete system.

2 Relation to Previous Work
The work presented in this paper is related to various sub-
fields of robotics and artificial intelligence. In particular it is
closely related to human-robot interaction and situated lan-
guage understanding [Kruijff et al., 2006]. We do not fo-
cus solely on the process of understanding an utterance, but
instead examine the steps necessary to mediate between the
various representations that can exist in systems that must act
on the world as a result of a command in natural language.

In terms of gross functionality there are few directly com-
parable systems, e.g. those presented in [Mavridis and Roy,
2006] and [Mcguire et al., 2002]. Whereas these systems
specify complete architectures for following manipulation
commands, we focus on a particular aspect of this behaviour.
As such our approach could be utilised by existing systems.
For example, it could be used in layer L3 of Mavridis and
Roy’s Grounded Situation Model [2006] to produced dis-
crete, categorical encodings of spatial relationships.

There are many plan-based dialogue systems that are used
(or potentially usable) for HRI (e.g., [Sidner et al., 2003;
Allen et al., 2001]). Most such systems try to exploit the con-
text of the current (dialogue) plan to interpret utterances. We
are not aware, however, of any system that, like ours, actu-
ally uses the formal action representation from the planning
domain to resolve referential expressions in at least a semi-
formal way. Critically, the “guidance” provided by the plan-
ning domain leads to a logical representation of the command
that the planner can reason about. For example, the planner
is able resolve referential expressions as part of the problem
solving process. This can be significant in dynamic environ-
ments: if a situation changes then the planner can resolve the
same referential expression differently.

3 Architecture
To enable a robot to follow action commands such as those
described in the introduction, we break the problem into a
number of processing steps. These steps are reflected by the
design of our overall processing architecture, which can be

(:action put
:parameters

(?a - agent ?obj - movable ?wp - waypoint)
:precondition (and

(pos ?obj : ?a)
(not (exists (?obj2 - movable) (pos ?obj2 : ?wp))))

:effect
(pos ?obj : ?wp))

Figure 2: MAPL operator put for placing objects.

seen in Figure 1. Our system is based on a combination of an
iRobot B21r mobile robot and a table-mounted Katana 6M
robotic arm. Mounted on the B21r is a pan-tilt unit support-
ing two parallel cameras which we use for visual input. From
these cameras we create a 3D representation of the scene us-
ing depth information from stereo to instantiate a collection
of simple object models. To produce actions, information
from vision is fed into a workspace-based visual-servoing
system along with instructions about which object to grasp,
and where to put it. Actions are limited to pick and place.
This suffices for the current experimental scenarios.

4 Planning Domain

For the purpose of this paper, a simple ontology was designed
which consists mainly of agents and objects. Objects may be
movable or not. They can have properties, e.g. colours, that
can be used to describe them or constrain subgroups of ob-
jects in a scene. Positions of objects in a scene are described
by waypoints. Concrete instances of waypoints are generated
on-the-fly during the problem-solving process (cf. §7). Re-
lations between waypoints include near, right of, and left of.
Despite being quite simple, this ontology allows us to repre-
sent complex situations and goals. Moreover, it is very easy
to extend to richer domains. For example, adding just one
new subtype of movable objects would enable the robot to
distinguish between objects that are stackable.

The ontology has been modelled as a planning domain in
MAPL [Brenner, 2005], a planning language for multiagent
environments based on PDDL [Fox and Long, 2003]. MAPL
is suitable for planning in HRI because it allows us to model
the beliefs and mutual beliefs of agents, sensory actions, com-
municative actions, and different forms of concurrency. Al-
though these features make MAPL highly suitable for human-
robot interaction, in this paper we mostly use the ADL sub-
set of MAPL. Figure 2 shows the operator for placing ob-
jects. Note that MAPL uses non-boolean state variables, e.g.
(pos obj), which are tested or changed with statements like
(pos obj : ?wp). Thus, in MAPL there is no need to state that
the robot no longer holds the object after putting it down (a
statement which would be necessary in PDDL).

Currently, no planner is available that is specifically de-
signed for MAPL. Instead, we use a compiler for transform-
ing MAPL into PDDL and back. This enables us to use a
state-of-the-art planner in our system without losing the de-
scriptive power of MAPL; the planning system used currently
is FF [Hoffmann and Nebel, 2001].
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5 Converting Linguistic Input to MAPL
In AI Planning, goals are typically formulated in (a subset of)
first-order logic, i.e. as formulae that must hold in the state
achieved by the plan (see, for example, the definition of goals
in the ADL subset of PDDL [Fox and Long, 2003]). Humans,
however, usually use imperative commands, like “clear the ta-
ble”, when communicating goals. One reason for verbalising
an action command instead of a goal description could be that
the former provides a very compact representation of the lat-
ter by means of its postconditions, i.e. the immediate changes
to the world caused by the action. Speaking in AI Planning
terms, if the action “clear table” has an ADL effect saying that
after its execution “there exists no object that is on the table”,
the action name plus its parameters is a much simpler means
to convey that goal than the effect formula. What complicates
the matter is that, in contrast to AI planners, humans usually
do not use unique names for objects, but refer to them in ex-
pressions that constrain the possible referents (i.e. “the red
ball” instead of object17). Altogether, the “human way”
to describe goals can be described as goal = action + param-
eters + reference constraints.

Deliberative agents that have ADL-like action representa-
tions can exploit this goal description scheme when trying
to understand a natural language command: after matching
the verb phrase of a command with an appropriate planning
operator, this operator can be used to guide the further un-
derstanding of the command, namely determining the action
parameters and reference constraints.

We will illustrate this process with the command “put the
blue cubes to the left of the red ball”. Our system parses
the command using a simple English grammar and a chart
parser. The parse tree of the example command describes the
phrase as a verb, followed by a nominal phrase and a prepo-
sitional phrase (V NP PP). When the system detects the verb
“put”, it is matched to the planning operator put (cf. Figure
2). The subsequent interpretation procedure is specific to that
operator and aims at determining the constraints describing
the three parameters of the operator, ?a, ?obj and ?wp. This
prior knowledge drives the interpretation of the phrase and
simplifies this process significantly. In our example, the NP
is interpreted to describe the object ?obj that is to be moved
while the PP describes the target position ?wp. The follow-
ing logical constraint on the parameters ?a, ?obj and ?wp is
found (in which ?obj1 is the landmark1 object in relation to
which the goal position is described):

(blue ?obj) ∧(type ?obj : cube) ∧
∃?wp1. ((left-of ?wp ?wp1) ∧ ∃?obj1. ((red ?obj1) ∧

(type ?obj1 : ball) ∧ (pos ?obj1 : wp1)))

Additionally, the interpretation states that all objects satisfy-
ing the constraints on ?obj must be moved. This quantifica-
tion becomes visible in the final translation of the command
into a MAPL goal, shown in Figure 3 (where type constraints
are transformed into the types of the quantified variables).

One important aspect of the natural language command is
that it refers both to the goal state (where should the blue

1For the rest of the paper we will refer to the object or objects
that should be moved as the target, and the object or objects that are
used to define the desired position of the target as the landmark.

(forall (?obj - cube) (imply
(and (initially (blue ?obj)))
(exists (?wp - waypoint)

(exists (?obj1 - ball ?wp1 - waypoint) (and
(initially (red ?obj1))
(initially (pos ?obj1 : ?wp1))
(initially (left-of ?wp ?wp1))
(pos ?obj : ?wp))))))

Figure 3: Automatically generated MAPL goal for “put the
blue cubes to the left of the red ball”

cubes be put?) and to the initial state (the reference con-
straints determining the objects). It is crucial for the planning
representation to be able to model this difference, otherwise
contradictory problems may be generated. For example, the
command “put down the object that you are holding” pro-
vides two constraints on the object’s position: that it is held
by the robot now, but is on the ground after plan execution.
Therefore, MAPL supports referring back to the initial state
in the goal description as shown in Figure 3. The facts that
must hold after execution of the plan are described by the ef-
fect of the put action. In our example, this effect describes
the new position of the object in question.

It is important to realise that the goal descriptions gener-
ated by this process still contain the referential expressions
from the original command, i.e. they are not compiled away
or resolved directly. Instead they will be resolved by the plan-
ner. We call this “lazy” reference resolution. It enables the
robot to dynamically re-evaluate its goals and plans in dy-
namic situations. If, for example, another blue cube is added
to the scene, the planner will adapt to the changed situation
and move all of the blue blocks.

6 Computational Models of Spatial Cognition
To act on the kinds of action commands we are interested in,
the robot must be able to translate from the qualitative spatial
linguistic description of the location to place the object, to
both a geometric description of the location that can be used
by the manipulation system (i.e. a geometric waypoint posi-
tioned in the robot’s world), and a logical description for the
planning domain (i.e. a symbolic representation of this way-
point and its relationships with other waypoints). This trans-
lation involves constructing computational geometric models
of the semantics of spatial terms.

Spatial reasoning is a complex activity that involves at least
two levels of representation and reasoning: a geometric level
where metric, topological, and projective properties are han-
dled; and a functional level where the normal function of an
entity affects the spatial relationships attributed to it in a con-
text. In this paper we concentrate on the geometric level, al-
though using functional spatial information would not require
any significant changes to our overall system.

Psycholinguistic research [Logan and Sadler, 1996; Regier
and Carlson, 2001; Costello and Kelleher, 2006] indicates
that people decide whether the spatial relation associated with
a preposition holds between and landmark object and the re-
gions around it by overlaying a spatial template on the land-
mark. A spatial template is a representation of the regions of
acceptability associated with a given preposition. It is centred
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on the landmark, and for each point in space it denotes the ac-
ceptability of the spatial relationship between it and the land-
mark. Figure 4 illustrates the spatial template for the prepo-
sition “near” reported in [Logan and Sadler, 1996].

1.74 1.90 2.84 3.16 2.34 1.81 2.13

2.61 3.84 4.66 4.97 4.90 3.56 3.26

4.06 5.56 7.55 7.97 7.29 4.80 3.91

3.47 4.81 6.94 7.56 7.31 5.59 3.63

4.47 5.91 8.52 O 7.90 6.13 4.46

3.25 4.03 4.50 4.78 4.41 3.47 3.10

1.84 2.23 2.03 3.06 2.53 2.13 2.00

Figure 4: Mean goodness ratings for the relation near.

If a computational model is going to accommodate the
gradation of a preposition’s spatial template it must de-
fine the semantics of the preposition as some sort of con-
tinuum function. A potential field model is one widely
used form of continuum measure [Olivier and Tsujii, 1994;
Kelleher et al., 2006]. Using this approach, a spatial tem-
plate is built using a construction set of normalised equations
that for a given origin and point computes a value that repre-
sents the cost of accepting that point as the interpretation of
the preposition. Each equation used to construct the potential
field representation of a preposition’s spatial template models
a different geometric constraint specified by the preposition’s
semantics. For example, for projective prepositions, such as
“to the right of”, an equation modelling the angular deviation
of a point from the idealised direction denoted by preposition
would be included in the construction set. The potential field
is then built by assigning each point in the field an overall po-
tential by integrating the results computed for that by point by
each of the equations in the construction set. The point with
the highest overall potential is then taken as the location that
the object should be placed at to satisfy the relationship.

7 Qualitative Representations from Vision
The previous sections have discussed the representation we
use for planning, how we translate action commands into goal
states in this representation, and how we model spatial rela-
tionships. This section describes a process that produces an
initial state description for the a planning process by applying
these techniques to mediate between geometric visual infor-
mation and the symbolic planning representation.

We break the task of generating a state description from
vision and language into three steps: converting information
about visible objects into a symbolic representation, adding
information about specific spatial relationships to this repre-
sentation, and generating new information required by the
planning process. These last two steps use potential field
models in two different ways. The first applies them to known
waypoints in the world to generate logical predicates (e.g.

for rel in goal relationships do
for wpl in waypoints do

initialise scene sc
add landmark wpl to sc
for wpt to in waypoints − wpl do

add waypoints − wpl − wpt to s as distractors
compute field pf for rel in s
check value val of pf at wptarget

if val > 0 then
add (rel wpt wpl) to state

Figure 5: Algorithm for generating spatial relationship rel.

“left of”) for the planning domain. The second applies a field
to a single known waypoint to generate a new set of way-
points that all satisfy a predicate for the planning domain.

The first step in the process of interpreting and acting upon
a command is to translate the information directly obtain-
able from vision into our planning domain. This is done in
a straight-forward way. For each object in the world we gen-
erate a description in the language of the planning domain.
Each object is represented in the planning domain by an ID
which is stored to allow other process to index back into the
geometric vision representation via the planning representa-
tion. Representing an object involves describing its colour
and type (information which is directly available from our vi-
sion system). To position the object in the world we must also
place the object at a waypoint. To do this we add a waypoint
to the planning domain at the centre of the object’s bounding
box on the table. Waypoints are also represented by a stored
ID that can be used access its position in the real world, so
that later processes can use this information.

The second step in the process of generating an initial state
is to add information about the spatial relations of the way-
points to the planning problem. This allows the planner to
reason about how moving objects between waypoints changes
their spatial relationships. Rather than add information about
all of the spatial relationships that exist between all of the
waypoints, we focus only on the relationships included in the
goal state because any additional information would be irrele-
vant to the current task. Thus our approach is explicitly task-
orientated. The algorithm we use is presented in Figure 5.
In this algorithm, distractors represent points in the potential
field that may influence the field in some way (e.g reducing
its value, or altering its extent).

The final step of the initial state generation process is to
add additional waypoints in order to give the planner enough
suitable object locations to produce a plan. This is neces-
sary because the waypoints from the previous step are all ini-
tially occupied, and may not satisfy the spatial constraints in
the goal description. To add waypoints, we first ground the
target description (e.g. “the blue cubes” from “put the blue
cubes left of the red ball”) in the visual information to pro-
vide a count of the number of objects that must be moved.
We then find the waypoint for the landmark object (e.g. “the
red ball”), and generate the required number of waypoints in
the potential field around the landmark for the given spatial
relationship (e.g. “left of”). The algorithm we use to gen-
erate the new waypoints is presented in Figure 6. Because
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initialise scene sc
add landmark wpl to sc
add waypoints - targets - wpl to s as distractors
compute field pf for rel in s
for i = 0 to n do

get max of pf
if max > 0 then

add new waypoint at location of max
else

return failure

Figure 6: Algorithm for generating n new waypoints for
targets at the spatial relationship rel around landmark wpl.

(a) The initial state. (b) The state after execution

Figure 7: Images of the world before and after plan execution.

this algorithm is greedy, it may fail to place the waypoints in
the potential field even if enough space is available. This is
something that must be addressed in future work.

8 Worked Example
This section presents an example processing run from the im-
plementation of our system. The initial scene for the exam-
ple can be seen in Figure 7(a). A visualisation generated by
the system is presented in Figure 8(a). The scene contains
a red ball, two green cubes and two blue cubes. Processing
is started by the command “put the blue cubes to the left of
the red ball”. This is passed into the linguistic processing
component. This component processes the text as described
in §5, which produces the MAPL goal state shown in Fig-
ure 3. The linguistic input triggers the current scene to be
pulled from vision. This returns a scene with a red ball cen-
tred at (200, 200), green cubes at (150, 150) and (150, 250),
and blue cubes at (250, 250) and (250, 150) (these numbers
have been adjusted for a simpler presentation).

The goal and visual information is then used as input into
the discrete-continuous mediation process. As described in
§7, this process assigns IDs for each object and a waypoint
for each object position. This results in the following map-
ping for the scene (the brackets contain information that is
accessible from vision via the IDs):

obj_d0 (blue cube) at wp_d1 (250,250)
obj_d2 (blue cube) at wp_d3 (250,150)
obj_d4 (green cube) at wp_d5 (150,250)
obj_d6 (green cube) at wp_d7 (150,150)
obj_d8 (red ball) at wp_d9 (200,200)

The qualitative part of this is transformed into a MAPL
expression to form part of the initial state for planning:

(pos obj_d0 : wp_d1) (pos obj_d2 : wp_d3)
(pos obj_d4 : wp_d5) (pos obj_d6 : wp_d7)
(pos obj_d8 : wp_d9)
(blue obj_d0) (blue obj_d2)
(green obj_d4) (green obj_d6) (red obj_d8)

Next, the mapping process uses potential fields to generate
the spatial relationships between the waypoints for all of the
visible objects. Only the relationships necessary to satisfy
the goal state are considered, so in this case only the “left of”
relationship is considered. Part of this process is presented in
Figure 8(b), which shows the “left of” field for the top right
cube. In this picture the camera is positioned directly in front
of the red ball (hence the field being tilted). This results in
the following information being added to the initial state:

(left_of wp_d5 wp_d1) (left_of wp_d9 wp_d1)
(left_of wp_d5 wp_d3) (left_of wp_d7 wp_d3)
(left_of wp_d9 wp_d3) (left_of wp_d5 wp_d9)
(left_of wp_d7 wp_d9)

The next step is to generate new waypoints that can be used
to satisfy the goal state. This is done by grounding the land-
mark and target elements of the goal state in the information
from vision. The target group (“the blue cubes”) is grounded
by counting how many of the visible objects match this de-
scription. Because there are two objects that match the colour
and shape of the objects described by the human, two new
waypoints are generated at the specified spatial relationship
to the landmark group. The waypoint for the landmark object
is identified (in this case wp_d9), and then the new waypoints
must be placed as dictated by the appropriate potential field.
In this case a projective field is generated around the red ball’s
waypoint, with the non-target objects (the green cubes) as dis-
tractors. This field can be seen in Figure 8(c). The new way-
point positions are selected by picking the points in the field
with the highest values (and inhibiting the area around the
points selected). This final step is presented in Figure 8(d),
and results in the following extra information being added to
the mapping: wp_d10 (172,200), wp_d11 (156,200).

To complete the planning problem, its initial state is ex-
tended with left_of propositions describing the spatial re-
lations of the newly generated empty waypoints to the already
occupied ones. Finally the FF planner is run, returning:

0: pickup robot obj_d0 wp_d1
1: put robot obj_d0 wp_d11
2: pickup robot obj_d2 wp_d3
3: put robot obj_d2 wp_d10

Although the plan looks simple in this example, note that the
referential constraints in the goal description (cf. Figure 3) are
correctly resolved: the two blue blocks are picked up. Note
further that even this problem contains non-trivial causal con-
straints between actions to which the planner automatically
adheres: neither does it try to pick up several objects at once,
nor does it place several objects on the same waypoint.

Before plan execution, the plan must be updated to include
information about the current scene. This is done by query-
ing the mediation process to determine the objects from vi-
sion referred to by the object IDs. Using this information the
manipulation system acts out the human’s command by pick-
ing up each blue cube in turn and placing them at the points
indicated in Figure 8(d), resulting in the scene in Figure 7(b).
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(a) The initial state. (b) The potential field for “left”
for the top right cube.

(c) The potential field for “left”
with two target cubes removed.

(d) The target cubes placed at the
highest points in the field.

Figure 8: The progression of generated potential fields in for the processing of “put the blue cubes to the left of the red ball”.
The two squares on the left represent green cubes, whilst the two on the right represent blue ones.

9 Conclusions and Future Work
In this paper we presented a novel approach to mediating be-
tween quantitative and qualitative representations for a robot
that must follow commands to perform manipulative actions.
Within this approach we have demonstrated two novel tech-
niques: a generic method for the interpretation of natural lan-
guage action commands driven by planning operators that en-
ables “lazy” resolution of referential expressions by a plan-
ner; and the task-orientated use of potential field models to
both automatically generate waypoints in real space that the
planner can use to solve an under-constrained problem, and
to add spatial relationships between existing waypoints.

As this approach is still in its early stages there are a num-
ber of features we would like to add to it. These include op-
timisation functions for the planner, possibly based on spa-
tial knowledge; more robust methods for placing waypoints
in potential fields, perhaps using local search; and methods
of detecting failure when no waypoints can be placed, or no
plan can be found. In this latter case there are a number of
alterations that can be made to the state generation process
that may allow a plan to be found, even if it is not of a high
quality. Future scenarios for our robot will consist of multi-
step mixed-initiative interactions with humans. To this end
we want to extend our mediation methods to support the gen-
eration of descriptions for spatial configurations and plans.
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